利用源于人类多能干细胞的心脏组装体模拟房室传导轴

IF 19.8 1区 医学 Q1 CELL & TISSUE ENGINEERING
Jiuru Li, Alexandra Wiesinger, Lianne Fokkert, Priscilla Bakker, Dylan K. de Vries, Anke J. Tijsen, Yigal M. Pinto, Arie O. Verkerk, Vincent M. Christoffels, Gerard J.J. Boink, Harsha D. Devalla
{"title":"利用源于人类多能干细胞的心脏组装体模拟房室传导轴","authors":"Jiuru Li, Alexandra Wiesinger, Lianne Fokkert, Priscilla Bakker, Dylan K. de Vries, Anke J. Tijsen, Yigal M. Pinto, Arie O. Verkerk, Vincent M. Christoffels, Gerard J.J. Boink, Harsha D. Devalla","doi":"10.1016/j.stem.2024.08.008","DOIUrl":null,"url":null,"abstract":"<p>The atrioventricular (AV) conduction axis provides electrical continuity between the atrial and ventricular chambers. The “nodal” cardiomyocytes populating this region (AV canal in the embryo, AV node from fetal stages onward) propagate impulses slowly, ensuring sequential contraction of the chambers. Dysfunction of AV nodal tissue causes severe disturbances in rhythm and contraction, and human models that capture its salient features are limited. Here, we report an approach for the reproducible generation of AV canal cardiomyocytes (AVCMs) with <em>in vivo</em>-like gene expression and electrophysiological profiles. We created the so-called “assembloids” composed of atrial, AVCM, and ventricular spheroids, which effectively recapitulated unidirectional conduction and the “fast-slow-fast” activation pattern typical for the vertebrate heart. We utilized these systems to reveal intracellular calcium mishandling as the basis of <em>LMNA</em>-associated AV conduction block. In sum, our study introduces novel cell differentiation and tissue construction strategies to facilitate the study of complex disorders affecting heart rhythm.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":"5 1","pages":""},"PeriodicalIF":19.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids\",\"authors\":\"Jiuru Li, Alexandra Wiesinger, Lianne Fokkert, Priscilla Bakker, Dylan K. de Vries, Anke J. Tijsen, Yigal M. Pinto, Arie O. Verkerk, Vincent M. Christoffels, Gerard J.J. Boink, Harsha D. Devalla\",\"doi\":\"10.1016/j.stem.2024.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The atrioventricular (AV) conduction axis provides electrical continuity between the atrial and ventricular chambers. The “nodal” cardiomyocytes populating this region (AV canal in the embryo, AV node from fetal stages onward) propagate impulses slowly, ensuring sequential contraction of the chambers. Dysfunction of AV nodal tissue causes severe disturbances in rhythm and contraction, and human models that capture its salient features are limited. Here, we report an approach for the reproducible generation of AV canal cardiomyocytes (AVCMs) with <em>in vivo</em>-like gene expression and electrophysiological profiles. We created the so-called “assembloids” composed of atrial, AVCM, and ventricular spheroids, which effectively recapitulated unidirectional conduction and the “fast-slow-fast” activation pattern typical for the vertebrate heart. We utilized these systems to reveal intracellular calcium mishandling as the basis of <em>LMNA</em>-associated AV conduction block. In sum, our study introduces novel cell differentiation and tissue construction strategies to facilitate the study of complex disorders affecting heart rhythm.</p>\",\"PeriodicalId\":9665,\"journal\":{\"name\":\"Cell stem cell\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":19.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell stem cell\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stem.2024.08.008\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.08.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

房室(AV)传导轴提供心房和心室之间的电连续性。分布在这一区域的 "结节 "心肌细胞(胚胎期为房室管,胎儿期以后为房室结)缓慢传播冲动,确保心室依次收缩。房室结组织的功能障碍会导致节律和收缩的严重紊乱,而能捕捉其显著特征的人体模型却很有限。在此,我们报告了一种可重复生成具有类似活体基因表达和电生理特征的房室结心肌细胞(AVCMs)的方法。我们创建了由心房、房室管和心室球体组成的所谓 "组装体",它有效地再现了单向传导和脊椎动物心脏典型的 "快-慢-快 "激活模式。我们利用这些系统揭示了细胞内钙处理不当是 LMNA 相关房室传导阻滞的基础。总之,我们的研究引入了新的细胞分化和组织构建策略,以促进对影响心律的复杂疾病的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids

Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids

The atrioventricular (AV) conduction axis provides electrical continuity between the atrial and ventricular chambers. The “nodal” cardiomyocytes populating this region (AV canal in the embryo, AV node from fetal stages onward) propagate impulses slowly, ensuring sequential contraction of the chambers. Dysfunction of AV nodal tissue causes severe disturbances in rhythm and contraction, and human models that capture its salient features are limited. Here, we report an approach for the reproducible generation of AV canal cardiomyocytes (AVCMs) with in vivo-like gene expression and electrophysiological profiles. We created the so-called “assembloids” composed of atrial, AVCM, and ventricular spheroids, which effectively recapitulated unidirectional conduction and the “fast-slow-fast” activation pattern typical for the vertebrate heart. We utilized these systems to reveal intracellular calcium mishandling as the basis of LMNA-associated AV conduction block. In sum, our study introduces novel cell differentiation and tissue construction strategies to facilitate the study of complex disorders affecting heart rhythm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell stem cell
Cell stem cell 生物-细胞生物学
CiteScore
37.10
自引率
2.50%
发文量
151
审稿时长
42 days
期刊介绍: Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信