{"title":"钾通过增加碳流刺激柑橘果实糖分积累","authors":"Kongjie Wu, Chengxiao Hu, Peiyu Liao, Yinlong Hu, Xuecheng Sun, Qiling Tan, Zhiyong Pan, Shoujun Xu, Zhihao Dong, Songwei Wu","doi":"10.1093/hr/uhae240","DOIUrl":null,"url":null,"abstract":"Soluble sugars contribute to the taste and flavor of citrus fruit. Potassium (K), known as a quality element, plays key roles in improving sugar accumulation and fruit quality, but the mechanism is largely unknown. This study aims to elucidate how K improves sugar accumulation by regulating carbon flow from source leaves to fruit in Newhall navel orange. We found that optimal fruit K concentrations around 1.5% improved sugar accumulation and fruit quality in citrus. K application increased the strength of both sink and source, as indicated by the increased fruit growth rate, enzymes activities and expression levels of key genes involved in sucrose (Suc) metabolism in fruit and leaf. K application also facilitated Suc transport from source leaves to fruit, as confirmed by the enhanced 13C-Suc level in fruit. Furthermore, we found that navel orange used symplastic pathway for transporting Suc from source leaves to fruits, and K application enhanced symplastic loading, as demonstrated by the intensified CF signal and increased plasmodesmata density in leaves. The findings reveal that K stimulates fruit sugar accumulation by increasing carbon flow from source leaves to fruit in Newhall navel orange.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"16 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potassium stimulates fruit sugar accumulation by increasing carbon flow in Citrus sinensis\",\"authors\":\"Kongjie Wu, Chengxiao Hu, Peiyu Liao, Yinlong Hu, Xuecheng Sun, Qiling Tan, Zhiyong Pan, Shoujun Xu, Zhihao Dong, Songwei Wu\",\"doi\":\"10.1093/hr/uhae240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soluble sugars contribute to the taste and flavor of citrus fruit. Potassium (K), known as a quality element, plays key roles in improving sugar accumulation and fruit quality, but the mechanism is largely unknown. This study aims to elucidate how K improves sugar accumulation by regulating carbon flow from source leaves to fruit in Newhall navel orange. We found that optimal fruit K concentrations around 1.5% improved sugar accumulation and fruit quality in citrus. K application increased the strength of both sink and source, as indicated by the increased fruit growth rate, enzymes activities and expression levels of key genes involved in sucrose (Suc) metabolism in fruit and leaf. K application also facilitated Suc transport from source leaves to fruit, as confirmed by the enhanced 13C-Suc level in fruit. Furthermore, we found that navel orange used symplastic pathway for transporting Suc from source leaves to fruits, and K application enhanced symplastic loading, as demonstrated by the intensified CF signal and increased plasmodesmata density in leaves. The findings reveal that K stimulates fruit sugar accumulation by increasing carbon flow from source leaves to fruit in Newhall navel orange.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae240\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae240","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Potassium stimulates fruit sugar accumulation by increasing carbon flow in Citrus sinensis
Soluble sugars contribute to the taste and flavor of citrus fruit. Potassium (K), known as a quality element, plays key roles in improving sugar accumulation and fruit quality, but the mechanism is largely unknown. This study aims to elucidate how K improves sugar accumulation by regulating carbon flow from source leaves to fruit in Newhall navel orange. We found that optimal fruit K concentrations around 1.5% improved sugar accumulation and fruit quality in citrus. K application increased the strength of both sink and source, as indicated by the increased fruit growth rate, enzymes activities and expression levels of key genes involved in sucrose (Suc) metabolism in fruit and leaf. K application also facilitated Suc transport from source leaves to fruit, as confirmed by the enhanced 13C-Suc level in fruit. Furthermore, we found that navel orange used symplastic pathway for transporting Suc from source leaves to fruits, and K application enhanced symplastic loading, as demonstrated by the intensified CF signal and increased plasmodesmata density in leaves. The findings reveal that K stimulates fruit sugar accumulation by increasing carbon flow from source leaves to fruit in Newhall navel orange.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.