介子代数及其 Lipschitz Monoids 的最新进展

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Jacques Helmstetter
{"title":"介子代数及其 Lipschitz Monoids 的最新进展","authors":"Jacques Helmstetter","doi":"10.1007/s00006-024-01354-7","DOIUrl":null,"url":null,"abstract":"<div><p>This article has two purposes. After a short reminder of classical properties of meson algebras (also called Duffin-Kemmer algebras), Sects. 4 to 7 present recent advances in the study of their algebraic structure. Then Sects. 8 to 11 explain that each meson algebra contains a Lipschitz monoid with properties quite similar to those of Lipschitz monoids in Clifford algebras.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-024-01354-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent Advances for Meson Algebras and their Lipschitz Monoids\",\"authors\":\"Jacques Helmstetter\",\"doi\":\"10.1007/s00006-024-01354-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article has two purposes. After a short reminder of classical properties of meson algebras (also called Duffin-Kemmer algebras), Sects. 4 to 7 present recent advances in the study of their algebraic structure. Then Sects. 8 to 11 explain that each meson algebra contains a Lipschitz monoid with properties quite similar to those of Lipschitz monoids in Clifford algebras.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"34 5\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00006-024-01354-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-024-01354-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01354-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文有两个目的。在简要回顾介子代数(又称达芬-基默代数)的经典性质之后,第 4 节至第 7 节介绍了介子代数结构研究的最新进展。第 4 节至第 7 节介绍了介子代数结构研究的最新进展。然后是第 8 至 11 节。第 8 节至第 11 节解释了每个介子代数都包含一个 Lipschitz 单调体,其性质与克利福德代数中 Lipschitz 单调体的性质十分相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent Advances for Meson Algebras and their Lipschitz Monoids

Recent Advances for Meson Algebras and their Lipschitz Monoids

This article has two purposes. After a short reminder of classical properties of meson algebras (also called Duffin-Kemmer algebras), Sects. 4 to 7 present recent advances in the study of their algebraic structure. Then Sects. 8 to 11 explain that each meson algebra contains a Lipschitz monoid with properties quite similar to those of Lipschitz monoids in Clifford algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信