Yanyan Zhu, Xinlei Wang, Yan He, Yajing Liu, Runze Wang, Yongsheng Liu, Songhu Wang
{"title":"染色体加倍可提高猕猴桃中 PECTIN METHYLESTERASE 2 的表达、生物量和渗透胁迫耐受性","authors":"Yanyan Zhu, Xinlei Wang, Yan He, Yajing Liu, Runze Wang, Yongsheng Liu, Songhu Wang","doi":"10.1093/plphys/kiae475","DOIUrl":null,"url":null,"abstract":"Chromosome doubling-induced polyploidization is a popular tool for crop breeding. Polyploidy crops commonly have multiple advantages, including increased biomass and stress tolerance. However, little is known about the genes responsible for these advantages. We found kiwifruit (Actinidia chinensis cv. Hongyang) PECTIN METHYLESTERASE 2 (AcPME2)is substantially upregulated in artificially created tetraploid plants that show increased biomass and enhanced tolerance to osmotic stress. Overexpression (OE) of AcPME2 led to increased biomass and enhanced stress tolerance in Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), and kiwifruit. Upon short-term osmotic stress treatment, AcPME2-OE plants showed higher levels of demethylesterified pectins and more Ca2+ accumulation in the cell wall than Col-0 plants, which led to increased cell wall stiffness. The stress-induced plasmolysis assays indicated that AcPME2 dynamically mediated the cell wall stiffness in response to osmotic stress, which is dependent on Ca2+ accumulation. Transcriptomic analysis discovered that dozens of stress-responsive genes were significantly upregulated in the AcPME2-OE plants under osmotic stress. Besides, AcPME2-mediated cell wall reinforcement prevented cell wall collapse and deformation under osmotic stress. Our results revealed a single gene contributes to two advantages of polyploidization (increased biomass and osmotic stress tolerance) and that AcPME2 dynamically regulates cell wall stiffness in response to osmotic stress.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chromosome doubling increases PECTIN METHYLESTERASE 2 expression, biomass, and osmotic stress tolerance in kiwifruit\",\"authors\":\"Yanyan Zhu, Xinlei Wang, Yan He, Yajing Liu, Runze Wang, Yongsheng Liu, Songhu Wang\",\"doi\":\"10.1093/plphys/kiae475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chromosome doubling-induced polyploidization is a popular tool for crop breeding. Polyploidy crops commonly have multiple advantages, including increased biomass and stress tolerance. However, little is known about the genes responsible for these advantages. We found kiwifruit (Actinidia chinensis cv. Hongyang) PECTIN METHYLESTERASE 2 (AcPME2)is substantially upregulated in artificially created tetraploid plants that show increased biomass and enhanced tolerance to osmotic stress. Overexpression (OE) of AcPME2 led to increased biomass and enhanced stress tolerance in Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), and kiwifruit. Upon short-term osmotic stress treatment, AcPME2-OE plants showed higher levels of demethylesterified pectins and more Ca2+ accumulation in the cell wall than Col-0 plants, which led to increased cell wall stiffness. The stress-induced plasmolysis assays indicated that AcPME2 dynamically mediated the cell wall stiffness in response to osmotic stress, which is dependent on Ca2+ accumulation. Transcriptomic analysis discovered that dozens of stress-responsive genes were significantly upregulated in the AcPME2-OE plants under osmotic stress. Besides, AcPME2-mediated cell wall reinforcement prevented cell wall collapse and deformation under osmotic stress. Our results revealed a single gene contributes to two advantages of polyploidization (increased biomass and osmotic stress tolerance) and that AcPME2 dynamically regulates cell wall stiffness in response to osmotic stress.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae475\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae475","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Chromosome doubling increases PECTIN METHYLESTERASE 2 expression, biomass, and osmotic stress tolerance in kiwifruit
Chromosome doubling-induced polyploidization is a popular tool for crop breeding. Polyploidy crops commonly have multiple advantages, including increased biomass and stress tolerance. However, little is known about the genes responsible for these advantages. We found kiwifruit (Actinidia chinensis cv. Hongyang) PECTIN METHYLESTERASE 2 (AcPME2)is substantially upregulated in artificially created tetraploid plants that show increased biomass and enhanced tolerance to osmotic stress. Overexpression (OE) of AcPME2 led to increased biomass and enhanced stress tolerance in Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), and kiwifruit. Upon short-term osmotic stress treatment, AcPME2-OE plants showed higher levels of demethylesterified pectins and more Ca2+ accumulation in the cell wall than Col-0 plants, which led to increased cell wall stiffness. The stress-induced plasmolysis assays indicated that AcPME2 dynamically mediated the cell wall stiffness in response to osmotic stress, which is dependent on Ca2+ accumulation. Transcriptomic analysis discovered that dozens of stress-responsive genes were significantly upregulated in the AcPME2-OE plants under osmotic stress. Besides, AcPME2-mediated cell wall reinforcement prevented cell wall collapse and deformation under osmotic stress. Our results revealed a single gene contributes to two advantages of polyploidization (increased biomass and osmotic stress tolerance) and that AcPME2 dynamically regulates cell wall stiffness in response to osmotic stress.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.