用泥炭上种植的玉米生产的生物甲烷比天然气排放更多的二氧化碳

IF 29.6 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Chris D. Evans, Rebecca L. Rowe, Benjamin W. J. Freeman, Jennifer M. Rhymes, Alex Cumming, Isobel L. Lloyd, Daniel Morton, Jennifer L. Williamson, Ross Morrison
{"title":"用泥炭上种植的玉米生产的生物甲烷比天然气排放更多的二氧化碳","authors":"Chris D. Evans, Rebecca L. Rowe, Benjamin W. J. Freeman, Jennifer M. Rhymes, Alex Cumming, Isobel L. Lloyd, Daniel Morton, Jennifer L. Williamson, Ross Morrison","doi":"10.1038/s41558-024-02111-1","DOIUrl":null,"url":null,"abstract":"Cultivation of maize for biomethane production has expanded rapidly, including on drained peat soils. The resulting soil CO2 emissions at the point of feedstock production are largely overlooked when assessing biogas climate mitigation potential. On the basis of field-scale flux measurements, we calculate that soil CO2 emissions from biomethane feedstock production on drained peat exceed embodied emissions for an equivalent amount of natural gas by up to a factor of three. Biogas is promoted as an alternative fuel with the potential to lower net CO2 emissions. However, here the authors calculate that growing biogas feedstock crops on drained peatlands may produce three times more CO2 than burning natural gas.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 10","pages":"1030-1032"},"PeriodicalIF":29.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02111-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomethane produced from maize grown on peat emits more CO2 than natural gas\",\"authors\":\"Chris D. Evans, Rebecca L. Rowe, Benjamin W. J. Freeman, Jennifer M. Rhymes, Alex Cumming, Isobel L. Lloyd, Daniel Morton, Jennifer L. Williamson, Ross Morrison\",\"doi\":\"10.1038/s41558-024-02111-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cultivation of maize for biomethane production has expanded rapidly, including on drained peat soils. The resulting soil CO2 emissions at the point of feedstock production are largely overlooked when assessing biogas climate mitigation potential. On the basis of field-scale flux measurements, we calculate that soil CO2 emissions from biomethane feedstock production on drained peat exceed embodied emissions for an equivalent amount of natural gas by up to a factor of three. Biogas is promoted as an alternative fuel with the potential to lower net CO2 emissions. However, here the authors calculate that growing biogas feedstock crops on drained peatlands may produce three times more CO2 than burning natural gas.\",\"PeriodicalId\":18974,\"journal\":{\"name\":\"Nature Climate Change\",\"volume\":\"14 10\",\"pages\":\"1030-1032\"},\"PeriodicalIF\":29.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41558-024-02111-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Climate Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41558-024-02111-1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-024-02111-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

用于生产生物甲烷的玉米种植面积迅速扩大,包括在排水泥炭土上。在评估沼气气候减缓潜力时,原料生产过程中产生的土壤二氧化碳排放量在很大程度上被忽视了。根据实地尺度的通量测量,我们计算出,在排水泥炭上生产生物甲烷原料所产生的土壤二氧化碳排放量比等量天然气的体现排放量最多高出三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biomethane produced from maize grown on peat emits more CO2 than natural gas

Biomethane produced from maize grown on peat emits more CO2 than natural gas

Biomethane produced from maize grown on peat emits more CO2 than natural gas
Cultivation of maize for biomethane production has expanded rapidly, including on drained peat soils. The resulting soil CO2 emissions at the point of feedstock production are largely overlooked when assessing biogas climate mitigation potential. On the basis of field-scale flux measurements, we calculate that soil CO2 emissions from biomethane feedstock production on drained peat exceed embodied emissions for an equivalent amount of natural gas by up to a factor of three. Biogas is promoted as an alternative fuel with the potential to lower net CO2 emissions. However, here the authors calculate that growing biogas feedstock crops on drained peatlands may produce three times more CO2 than burning natural gas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Climate Change
Nature Climate Change ENVIRONMENTAL SCIENCES-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
40.30
自引率
1.60%
发文量
267
审稿时长
4-8 weeks
期刊介绍: Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large. The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests. Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles. Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信