细菌嗜苷酸盐:多样性、吸收途径和应用

IF 69.2 1区 生物学 Q1 MICROBIOLOGY
Isabelle J. Schalk
{"title":"细菌嗜苷酸盐:多样性、吸收途径和应用","authors":"Isabelle J. Schalk","doi":"10.1038/s41579-024-01090-6","DOIUrl":null,"url":null,"abstract":"Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts. In this Review, Schalk explores the molecular mechanisms involved in siderophore-mediated iron acquisition in bacteria. In addition, the possible applications for siderophores in the environment, agriculture and medicine are also discussed.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 1","pages":"24-40"},"PeriodicalIF":69.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial siderophores: diversity, uptake pathways and applications\",\"authors\":\"Isabelle J. Schalk\",\"doi\":\"10.1038/s41579-024-01090-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts. In this Review, Schalk explores the molecular mechanisms involved in siderophore-mediated iron acquisition in bacteria. In addition, the possible applications for siderophores in the environment, agriculture and medicine are also discussed.\",\"PeriodicalId\":18838,\"journal\":{\"name\":\"Nature Reviews Microbiology\",\"volume\":\"23 1\",\"pages\":\"24-40\"},\"PeriodicalIF\":69.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41579-024-01090-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41579-024-01090-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铁是几乎所有细菌生长、生存和毒力所必需的营养物质。为了获得铁,许多细菌会产生嗜铁分子,即对铁具有高亲和力的分子。研究表明,细菌产生的嗜苷酸盐的化学结构具有很大的多样性,通过这些分子获取铁的策略所涉及的分子机制也有很大的不同。嗜苷酸盐的金属螯合特性,即对铁的高亲和力和对其他多种金属的螯合能力(尽管与铁相比亲和力较低),也引起了不同领域的兴趣。嗜苷酸盐可应用于生物修复和农业等环境领域,这些领域正在开发新的创新战略,以解决污染问题并提高植物的营养供应。此外,在医学领域,嗜硒酸盐可用作新型抗菌疗法和医学成像的工具,也可用于血色素沉着病、地中海贫血症或癌症的治疗。本综述深入探讨了嗜硒酸盐的多样性,重点介绍了它们在环境和医学方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bacterial siderophores: diversity, uptake pathways and applications

Bacterial siderophores: diversity, uptake pathways and applications

Bacterial siderophores: diversity, uptake pathways and applications
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts. In this Review, Schalk explores the molecular mechanisms involved in siderophore-mediated iron acquisition in bacteria. In addition, the possible applications for siderophores in the environment, agriculture and medicine are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Microbiology
Nature Reviews Microbiology 生物-微生物学
CiteScore
74.00
自引率
0.50%
发文量
149
审稿时长
6-12 weeks
期刊介绍: At Nature Reviews Microbiology, our goal is to become the leading source of reviews and commentaries for the scientific community we cater to. We are dedicated to publishing articles that are not only authoritative but also easily accessible, supplementing them with clear and concise figures, tables, and other visual aids. Our objective is to offer an unparalleled service to authors, referees, and readers, and we continuously strive to maximize the usefulness and impact of each article we publish. With a focus on Reviews, Perspectives, and Comments spanning the entire field of microbiology, our wide scope ensures that the work we feature reaches the widest possible audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信