Ze Zheng, Daria Smirnova, Gabriel Sanderson, Ying Cuifeng, Demosthenes C. Koutsogeorgis, Lujun Huang, Zixi Liu, Rupert Oulton, Arman Yousefi, Andrey E. Miroshnichenko, Dragomir N. Neshev, Mary O’Neill, Mohsen Rahmani, Lei Xu
{"title":"介电元表面导模共振控制的宽带红外成像","authors":"Ze Zheng, Daria Smirnova, Gabriel Sanderson, Ying Cuifeng, Demosthenes C. Koutsogeorgis, Lujun Huang, Zixi Liu, Rupert Oulton, Arman Yousefi, Andrey E. Miroshnichenko, Dragomir N. Neshev, Mary O’Neill, Mohsen Rahmani, Lei Xu","doi":"10.1038/s41377-024-01535-w","DOIUrl":null,"url":null,"abstract":"<p>Nonlinear metasurfaces have experienced rapid growth recently due to their potential in various applications, including infrared imaging and spectroscopy. However, due to the low conversion efficiencies of metasurfaces, several strategies have been adopted to enhance their performances, including employing resonances at signal or nonlinear emission wavelengths. This strategy results in a narrow operational band of the nonlinear metasurfaces, which has bottlenecked many applications, including nonlinear holography, image encoding, and nonlinear metalenses. Here, we overcome this issue by introducing a new nonlinear imaging platform utilizing a pump beam to enhance signal conversion through four-wave mixing (FWM), whereby the metasurface is resonant at the pump wavelength rather than the signal or nonlinear emissions. As a result, we demonstrate broadband nonlinear imaging for arbitrary objects using metasurfaces. A silicon disk-on-slab metasurface is introduced with an excitable guided-mode resonance at the pump wavelength. This enabled direct conversion of a broad IR image ranging from >1000 to 4000 nm into visible. Importantly, adopting FWM substantially reduces the dependence on high-power signal inputs or resonant features at the signal beam of nonlinear imaging by utilizing the quadratic relationship between the pump beam intensity and the signal conversion efficiency. Our results, therefore, unlock the potential for broadband infrared imaging capabilities with metasurfaces, making a promising advancement for next-generation all-optical infrared imaging techniques with chip-scale photonic devices.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"52 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband infrared imaging governed by guided-mode resonance in dielectric metasurfaces\",\"authors\":\"Ze Zheng, Daria Smirnova, Gabriel Sanderson, Ying Cuifeng, Demosthenes C. Koutsogeorgis, Lujun Huang, Zixi Liu, Rupert Oulton, Arman Yousefi, Andrey E. Miroshnichenko, Dragomir N. Neshev, Mary O’Neill, Mohsen Rahmani, Lei Xu\",\"doi\":\"10.1038/s41377-024-01535-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonlinear metasurfaces have experienced rapid growth recently due to their potential in various applications, including infrared imaging and spectroscopy. However, due to the low conversion efficiencies of metasurfaces, several strategies have been adopted to enhance their performances, including employing resonances at signal or nonlinear emission wavelengths. This strategy results in a narrow operational band of the nonlinear metasurfaces, which has bottlenecked many applications, including nonlinear holography, image encoding, and nonlinear metalenses. Here, we overcome this issue by introducing a new nonlinear imaging platform utilizing a pump beam to enhance signal conversion through four-wave mixing (FWM), whereby the metasurface is resonant at the pump wavelength rather than the signal or nonlinear emissions. As a result, we demonstrate broadband nonlinear imaging for arbitrary objects using metasurfaces. A silicon disk-on-slab metasurface is introduced with an excitable guided-mode resonance at the pump wavelength. This enabled direct conversion of a broad IR image ranging from >1000 to 4000 nm into visible. Importantly, adopting FWM substantially reduces the dependence on high-power signal inputs or resonant features at the signal beam of nonlinear imaging by utilizing the quadratic relationship between the pump beam intensity and the signal conversion efficiency. Our results, therefore, unlock the potential for broadband infrared imaging capabilities with metasurfaces, making a promising advancement for next-generation all-optical infrared imaging techniques with chip-scale photonic devices.</p>\",\"PeriodicalId\":20,\"journal\":{\"name\":\"ACS Medicinal Chemistry Letters\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Medicinal Chemistry Letters\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01535-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01535-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Broadband infrared imaging governed by guided-mode resonance in dielectric metasurfaces
Nonlinear metasurfaces have experienced rapid growth recently due to their potential in various applications, including infrared imaging and spectroscopy. However, due to the low conversion efficiencies of metasurfaces, several strategies have been adopted to enhance their performances, including employing resonances at signal or nonlinear emission wavelengths. This strategy results in a narrow operational band of the nonlinear metasurfaces, which has bottlenecked many applications, including nonlinear holography, image encoding, and nonlinear metalenses. Here, we overcome this issue by introducing a new nonlinear imaging platform utilizing a pump beam to enhance signal conversion through four-wave mixing (FWM), whereby the metasurface is resonant at the pump wavelength rather than the signal or nonlinear emissions. As a result, we demonstrate broadband nonlinear imaging for arbitrary objects using metasurfaces. A silicon disk-on-slab metasurface is introduced with an excitable guided-mode resonance at the pump wavelength. This enabled direct conversion of a broad IR image ranging from >1000 to 4000 nm into visible. Importantly, adopting FWM substantially reduces the dependence on high-power signal inputs or resonant features at the signal beam of nonlinear imaging by utilizing the quadratic relationship between the pump beam intensity and the signal conversion efficiency. Our results, therefore, unlock the potential for broadband infrared imaging capabilities with metasurfaces, making a promising advancement for next-generation all-optical infrared imaging techniques with chip-scale photonic devices.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.