洞察固体电解质 Li1/2La1/2TiO3 和锂/铟合金阳极† 的界面化学稳定性

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Qing-Shan Zhao, Cheng-Dong Wei, Yu-xia Hu, Hong-Tao Xue and Fu-Ling Tang
{"title":"洞察固体电解质 Li1/2La1/2TiO3 和锂/铟合金阳极† 的界面化学稳定性","authors":"Qing-Shan Zhao, Cheng-Dong Wei, Yu-xia Hu, Hong-Tao Xue and Fu-Ling Tang","doi":"10.1039/D4NJ02046D","DOIUrl":null,"url":null,"abstract":"<p >All-solid-state lithium–sulfur batteries (ASSLSBs) have gained significant attention due to their high energy density and excellent safety characteristics. However, the practical application of these batteries is hindered by interfacial issues between the solid electrolyte and electrode. The instability of this interface during charge–discharge cycles arises from side effects of the electrolyte and anode, as well as poor solid–solid contact. In this study, we employ first principles calculations to analyze the chemical stability at the interface between the Li<small><sub>1/2</sub></small>La<small><sub>1/2</sub></small>TiO<small><sub>3</sub></small> (LLTO) electrolyte and the Li anode, with a focus on strategies to address this issue and stabilize the cathode–electrolyte interface. We systematically investigate various physicochemical properties at the LLTO|Li and LLTO|LiIn<small><sub>2</sub></small> interfaces, including electron conductivity, work function, chemical stability, and Li<small><sup>+</sup></small> diffusion across the interface. Our findings demonstrate that LLTO|LiIn<small><sub>2</sub></small> exhibits enhanced long-term storage capabilities for ASSLSBs while reducing overall costs. Alloying lithium anodes with In atoms weakens electron injection into the electrolyte within the anode, thereby reducing chances of electrolyte reduction and improving charge–discharge performance. Additionally, a lower Li<small><sup>+</sup></small> diffusion barrier is observed at the LLTO|LiIn<small><sub>2</sub></small> interface which promotes efficient Li<small><sup>+</sup></small> transport. This work provides valuable theoretical insights for developing effective interface engineering strategies between electrolytes and anodes.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 35","pages":" 15502-15511"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into the interface chemical stability of the solid electrolyte Li1/2La1/2TiO3 and the Li/Li–In alloy anode†\",\"authors\":\"Qing-Shan Zhao, Cheng-Dong Wei, Yu-xia Hu, Hong-Tao Xue and Fu-Ling Tang\",\"doi\":\"10.1039/D4NJ02046D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >All-solid-state lithium–sulfur batteries (ASSLSBs) have gained significant attention due to their high energy density and excellent safety characteristics. However, the practical application of these batteries is hindered by interfacial issues between the solid electrolyte and electrode. The instability of this interface during charge–discharge cycles arises from side effects of the electrolyte and anode, as well as poor solid–solid contact. In this study, we employ first principles calculations to analyze the chemical stability at the interface between the Li<small><sub>1/2</sub></small>La<small><sub>1/2</sub></small>TiO<small><sub>3</sub></small> (LLTO) electrolyte and the Li anode, with a focus on strategies to address this issue and stabilize the cathode–electrolyte interface. We systematically investigate various physicochemical properties at the LLTO|Li and LLTO|LiIn<small><sub>2</sub></small> interfaces, including electron conductivity, work function, chemical stability, and Li<small><sup>+</sup></small> diffusion across the interface. Our findings demonstrate that LLTO|LiIn<small><sub>2</sub></small> exhibits enhanced long-term storage capabilities for ASSLSBs while reducing overall costs. Alloying lithium anodes with In atoms weakens electron injection into the electrolyte within the anode, thereby reducing chances of electrolyte reduction and improving charge–discharge performance. Additionally, a lower Li<small><sup>+</sup></small> diffusion barrier is observed at the LLTO|LiIn<small><sub>2</sub></small> interface which promotes efficient Li<small><sup>+</sup></small> transport. This work provides valuable theoretical insights for developing effective interface engineering strategies between electrolytes and anodes.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 35\",\"pages\":\" 15502-15511\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj02046d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj02046d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全固态锂硫电池(ASSLSBs)因其高能量密度和出色的安全特性而备受关注。然而,固态电解质和电极之间的界面问题阻碍了这些电池的实际应用。充放电循环过程中界面的不稳定性来自电解质和阳极的副作用以及固-固接触不良。在本研究中,我们利用第一性原理计算分析了 Li1/2La1/2TiO3 (LLTO) 电解质和锂阳极之间界面的化学稳定性,重点研究了解决这一问题和稳定阴极-电解质界面的策略。我们系统地研究了 LLTO|Li 和 LLTO|LiIn2 界面的各种物理化学特性,包括电子传导性、功函数、化学稳定性以及 Li+ 在界面上的扩散。我们的研究结果表明,LLTO|LiIn2 可增强 ASSLSB 的长期存储能力,同时降低总体成本。用 In 原子合金化锂阳极可减弱阳极内电解质中的电子注入,从而降低电解质还原的几率并改善充放电性能。此外,在 LLTO|LiIn2 界面还观察到较低的 Li+ 扩散阻抗,从而促进了 Li+ 的高效传输。这项研究为制定电解质和阳极之间有效的界面工程策略提供了宝贵的理论见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Insight into the interface chemical stability of the solid electrolyte Li1/2La1/2TiO3 and the Li/Li–In alloy anode†

Insight into the interface chemical stability of the solid electrolyte Li1/2La1/2TiO3 and the Li/Li–In alloy anode†

All-solid-state lithium–sulfur batteries (ASSLSBs) have gained significant attention due to their high energy density and excellent safety characteristics. However, the practical application of these batteries is hindered by interfacial issues between the solid electrolyte and electrode. The instability of this interface during charge–discharge cycles arises from side effects of the electrolyte and anode, as well as poor solid–solid contact. In this study, we employ first principles calculations to analyze the chemical stability at the interface between the Li1/2La1/2TiO3 (LLTO) electrolyte and the Li anode, with a focus on strategies to address this issue and stabilize the cathode–electrolyte interface. We systematically investigate various physicochemical properties at the LLTO|Li and LLTO|LiIn2 interfaces, including electron conductivity, work function, chemical stability, and Li+ diffusion across the interface. Our findings demonstrate that LLTO|LiIn2 exhibits enhanced long-term storage capabilities for ASSLSBs while reducing overall costs. Alloying lithium anodes with In atoms weakens electron injection into the electrolyte within the anode, thereby reducing chances of electrolyte reduction and improving charge–discharge performance. Additionally, a lower Li+ diffusion barrier is observed at the LLTO|LiIn2 interface which promotes efficient Li+ transport. This work provides valuable theoretical insights for developing effective interface engineering strategies between electrolytes and anodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信