Asim Yousuf;Rehan Hafiz;Saqib Riaz;Muhammad Farooq;Kashif Riaz;Muhammad Mahboob Ur Rahman
{"title":"从心电图第 II 导联检测下心肌梗死:基于革兰氏角场的 2D-CNN 方法","authors":"Asim Yousuf;Rehan Hafiz;Saqib Riaz;Muhammad Farooq;Kashif Riaz;Muhammad Mahboob Ur Rahman","doi":"10.1109/LSENS.2024.3450176","DOIUrl":null,"url":null,"abstract":"This letter presents a novel method for inferior myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). We evaluate our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from PhysioNet. Under our proposed method, we first clean the noisy ECG signals using db4 wavelet, followed by an R-peak detection algorithm to segment the ECG signals into beats. We then translate the ECG timeseries dataset to an equivalent dataset of grayscale images using Gramian angular summation field (GASF) and Gramian angular difference field (GADF) operations. Subsequently, the grayscale images are fed into a custom 2-D convolutional neural network (CNN), which efficiently differentiates between a healthy subject and a subject with MI. Our proposed approach achieves an average classification accuracy of 99.68%, 99.80%, 99.82%, and 99.84% under GASF dataset with noise and baseline wander, GADF dataset with noise and baseline wander, GASF dataset with noise and baseline wander removed, and GADF dataset with noise and baseline wander removed, respectively. Most importantly, this work opens the floor for innovation in wearable devices to measure lead II ECG (e.g., by a smart watch worn on right wrist, along with a smart patch on left leg), in order to do accurate, real-time, and early detection of inferior wall MI.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferior Myocardial Infarction Detection From Lead II of ECG: A Gramian Angular Field-Based 2D-CNN Approach\",\"authors\":\"Asim Yousuf;Rehan Hafiz;Saqib Riaz;Muhammad Farooq;Kashif Riaz;Muhammad Mahboob Ur Rahman\",\"doi\":\"10.1109/LSENS.2024.3450176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a novel method for inferior myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). We evaluate our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from PhysioNet. Under our proposed method, we first clean the noisy ECG signals using db4 wavelet, followed by an R-peak detection algorithm to segment the ECG signals into beats. We then translate the ECG timeseries dataset to an equivalent dataset of grayscale images using Gramian angular summation field (GASF) and Gramian angular difference field (GADF) operations. Subsequently, the grayscale images are fed into a custom 2-D convolutional neural network (CNN), which efficiently differentiates between a healthy subject and a subject with MI. Our proposed approach achieves an average classification accuracy of 99.68%, 99.80%, 99.82%, and 99.84% under GASF dataset with noise and baseline wander, GADF dataset with noise and baseline wander, GASF dataset with noise and baseline wander removed, and GADF dataset with noise and baseline wander removed, respectively. Most importantly, this work opens the floor for innovation in wearable devices to measure lead II ECG (e.g., by a smart watch worn on right wrist, along with a smart patch on left leg), in order to do accurate, real-time, and early detection of inferior wall MI.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 10\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10648729/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10648729/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Inferior Myocardial Infarction Detection From Lead II of ECG: A Gramian Angular Field-Based 2D-CNN Approach
This letter presents a novel method for inferior myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). We evaluate our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from PhysioNet. Under our proposed method, we first clean the noisy ECG signals using db4 wavelet, followed by an R-peak detection algorithm to segment the ECG signals into beats. We then translate the ECG timeseries dataset to an equivalent dataset of grayscale images using Gramian angular summation field (GASF) and Gramian angular difference field (GADF) operations. Subsequently, the grayscale images are fed into a custom 2-D convolutional neural network (CNN), which efficiently differentiates between a healthy subject and a subject with MI. Our proposed approach achieves an average classification accuracy of 99.68%, 99.80%, 99.82%, and 99.84% under GASF dataset with noise and baseline wander, GADF dataset with noise and baseline wander, GASF dataset with noise and baseline wander removed, and GADF dataset with noise and baseline wander removed, respectively. Most importantly, this work opens the floor for innovation in wearable devices to measure lead II ECG (e.g., by a smart watch worn on right wrist, along with a smart patch on left leg), in order to do accurate, real-time, and early detection of inferior wall MI.