基于局部无反射设计的高占空比脉冲大功率氮化镓倍增器

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yazhou Dong;Tianchi Zhou;Shixiong Liang;Guodong Gu;Hongji Zhou;Jianghua Yu;Hailong Guo;Yaxin Zhang
{"title":"基于局部无反射设计的高占空比脉冲大功率氮化镓倍增器","authors":"Yazhou Dong;Tianchi Zhou;Shixiong Liang;Guodong Gu;Hongji Zhou;Jianghua Yu;Hailong Guo;Yaxin Zhang","doi":"10.23919/cje.2023.00.179","DOIUrl":null,"url":null,"abstract":"The study focuses on the development of gallium nitride (GaN) Schottky barrier diode (SBD) frequency doublers for terahertz technology. The low conversion efficiency of these doublers limits their practical applications. To address this challenge, the paper proposes a multi-objective local no-reflection design method based on a three-dimensional electromagnetic structure. The method aims to improve the coupling efficiency of input power and reduce the reflection of power output. Experimental results indicate that the proposed method significantly improves the performance of GaN SBD frequency doublers, achieving an efficiency of 16.9% and a peak output power of 160 mW at 175 GHz. These results suggest that the method can contribute to the further development of GaN SBD frequency doublers for terahertz technology.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 5","pages":"1196-1203"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669724","citationCount":"0","resultStr":"{\"title\":\"High Power GaN Doubler with High Duty Cycle Pulse Based on Local Non-Reflection Design\",\"authors\":\"Yazhou Dong;Tianchi Zhou;Shixiong Liang;Guodong Gu;Hongji Zhou;Jianghua Yu;Hailong Guo;Yaxin Zhang\",\"doi\":\"10.23919/cje.2023.00.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study focuses on the development of gallium nitride (GaN) Schottky barrier diode (SBD) frequency doublers for terahertz technology. The low conversion efficiency of these doublers limits their practical applications. To address this challenge, the paper proposes a multi-objective local no-reflection design method based on a three-dimensional electromagnetic structure. The method aims to improve the coupling efficiency of input power and reduce the reflection of power output. Experimental results indicate that the proposed method significantly improves the performance of GaN SBD frequency doublers, achieving an efficiency of 16.9% and a peak output power of 160 mW at 175 GHz. These results suggest that the method can contribute to the further development of GaN SBD frequency doublers for terahertz technology.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"33 5\",\"pages\":\"1196-1203\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669724\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669724/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669724/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究重点是开发用于太赫兹技术的氮化镓(GaN)肖特基势垒二极管(SBD)倍频器。这些倍频器的低转换效率限制了它们的实际应用。为了应对这一挑战,本文提出了一种基于三维电磁结构的多目标局部无反射设计方法。该方法旨在提高输入功率的耦合效率,减少功率输出的反射。实验结果表明,该方法显著提高了氮化镓 SBD 倍频器的性能,在 175 GHz 频率下效率达到 16.9%,峰值输出功率达到 160 mW。这些结果表明,该方法有助于太赫兹技术 GaN SBD 倍频器的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Power GaN Doubler with High Duty Cycle Pulse Based on Local Non-Reflection Design
The study focuses on the development of gallium nitride (GaN) Schottky barrier diode (SBD) frequency doublers for terahertz technology. The low conversion efficiency of these doublers limits their practical applications. To address this challenge, the paper proposes a multi-objective local no-reflection design method based on a three-dimensional electromagnetic structure. The method aims to improve the coupling efficiency of input power and reduce the reflection of power output. Experimental results indicate that the proposed method significantly improves the performance of GaN SBD frequency doublers, achieving an efficiency of 16.9% and a peak output power of 160 mW at 175 GHz. These results suggest that the method can contribute to the further development of GaN SBD frequency doublers for terahertz technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信