{"title":"基于直流-直流转换器负载瞬态检测的单事件效应辐射加固设计方法","authors":"Zhongjie Guo;Nan Liu;Hu Lu;Mengli Li;Ziyi Qiu","doi":"10.23919/cje.2022.00.442","DOIUrl":null,"url":null,"abstract":"Aiming at the impact of load current change on single-event transient, the essential difference between single-event transient and load transient of DC-DC converter is deeply studied. A hardened circuit based on load transient detection is proposed. The circuit detects the load transient information in time and outputs a control signal to control the single event hardened circuit, thereby realizing the improvement of the transient characteristics of the system under dynamic conditions. Based on the 180 nm bipolar-CMOS-DMOS (BCD) process, the design and physical verification of a boost converter are completed. The experimental results show that the input voltage range is 2.9-4.5 V, the output voltage range is 5.8-7.9 V, and the load current is 0–55 mA. During load transients, the load detection circuit turns off the hardened circuit in time, avoiding system oscillation and widening the dynamic range of the hardening circuit. Under the single-event transient, the output voltage fluctuation of the system does not exceed the maximum ripple voltage, and the single-event transient suppression ability reaches more than 86%, the system can work well with linear energy transfer of about \n<tex>$100\\ \\text{MeV}\\cdot \\text{cm}^{2}/\\text{mg}$</tex>\n.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 5","pages":"1154-1164"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669747","citationCount":"0","resultStr":"{\"title\":\"Method of Single Event Effects Radiation Hardened Design for DC-DC Converter Based Load Transient Detection\",\"authors\":\"Zhongjie Guo;Nan Liu;Hu Lu;Mengli Li;Ziyi Qiu\",\"doi\":\"10.23919/cje.2022.00.442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the impact of load current change on single-event transient, the essential difference between single-event transient and load transient of DC-DC converter is deeply studied. A hardened circuit based on load transient detection is proposed. The circuit detects the load transient information in time and outputs a control signal to control the single event hardened circuit, thereby realizing the improvement of the transient characteristics of the system under dynamic conditions. Based on the 180 nm bipolar-CMOS-DMOS (BCD) process, the design and physical verification of a boost converter are completed. The experimental results show that the input voltage range is 2.9-4.5 V, the output voltage range is 5.8-7.9 V, and the load current is 0–55 mA. During load transients, the load detection circuit turns off the hardened circuit in time, avoiding system oscillation and widening the dynamic range of the hardening circuit. Under the single-event transient, the output voltage fluctuation of the system does not exceed the maximum ripple voltage, and the single-event transient suppression ability reaches more than 86%, the system can work well with linear energy transfer of about \\n<tex>$100\\\\ \\\\text{MeV}\\\\cdot \\\\text{cm}^{2}/\\\\text{mg}$</tex>\\n.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"33 5\",\"pages\":\"1154-1164\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669747\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669747/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669747/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Method of Single Event Effects Radiation Hardened Design for DC-DC Converter Based Load Transient Detection
Aiming at the impact of load current change on single-event transient, the essential difference between single-event transient and load transient of DC-DC converter is deeply studied. A hardened circuit based on load transient detection is proposed. The circuit detects the load transient information in time and outputs a control signal to control the single event hardened circuit, thereby realizing the improvement of the transient characteristics of the system under dynamic conditions. Based on the 180 nm bipolar-CMOS-DMOS (BCD) process, the design and physical verification of a boost converter are completed. The experimental results show that the input voltage range is 2.9-4.5 V, the output voltage range is 5.8-7.9 V, and the load current is 0–55 mA. During load transients, the load detection circuit turns off the hardened circuit in time, avoiding system oscillation and widening the dynamic range of the hardening circuit. Under the single-event transient, the output voltage fluctuation of the system does not exceed the maximum ripple voltage, and the single-event transient suppression ability reaches more than 86%, the system can work well with linear energy transfer of about
$100\ \text{MeV}\cdot \text{cm}^{2}/\text{mg}$
.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.