{"title":"稀释和半稀释区个性化纤维素纳米纤维的粘弹性和双折射松弛","authors":"Reina Tanaka*, and , Tadashi Inoue, ","doi":"10.1021/acs.biomac.4c0003810.1021/acs.biomac.4c00038","DOIUrl":null,"url":null,"abstract":"<p >Viscoelastic relaxation mechanisms of individualized cellulose nanofibers (iCNFs) dispersed in glycerol in the dilute and semidilute regions were investigated by linear viscoelastic and dynamic birefringence measurements. The birefringence relaxation of the iCNFs was described by the orientational and curvature modes of an existing viscoelastic theory for ideal semiflexible polymers (Shankar–Pasquali–Morse theory). However, the Shankar–Pasquali–Morse theory could not fully describe the iCNF viscoelastic relaxation at high frequencies. Considering the results for birefringence relaxation, the experimental tension mode of the iCNFs was evaluated to be higher than the theoretical value. These results show that the viscoelastic relaxations of the iCNFs are different from those of ideal semiflexible polymers, in contrast to cellulose nanocrystals (CNCs). As the iCNF concentration increased, the orientational mode dramatically slowed, which was more drastic than other semiflexible polymers, including CNCs. This anomalous behavior is likely due to the nonideal nature of iCNFs.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"25 9","pages":"5718–5728 5718–5728"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscoelastic and Birefringence Relaxation of Individualized Cellulose Nanofibers in the Dilute and Semidilute Regions\",\"authors\":\"Reina Tanaka*, and , Tadashi Inoue, \",\"doi\":\"10.1021/acs.biomac.4c0003810.1021/acs.biomac.4c00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Viscoelastic relaxation mechanisms of individualized cellulose nanofibers (iCNFs) dispersed in glycerol in the dilute and semidilute regions were investigated by linear viscoelastic and dynamic birefringence measurements. The birefringence relaxation of the iCNFs was described by the orientational and curvature modes of an existing viscoelastic theory for ideal semiflexible polymers (Shankar–Pasquali–Morse theory). However, the Shankar–Pasquali–Morse theory could not fully describe the iCNF viscoelastic relaxation at high frequencies. Considering the results for birefringence relaxation, the experimental tension mode of the iCNFs was evaluated to be higher than the theoretical value. These results show that the viscoelastic relaxations of the iCNFs are different from those of ideal semiflexible polymers, in contrast to cellulose nanocrystals (CNCs). As the iCNF concentration increased, the orientational mode dramatically slowed, which was more drastic than other semiflexible polymers, including CNCs. This anomalous behavior is likely due to the nonideal nature of iCNFs.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"25 9\",\"pages\":\"5718–5728 5718–5728\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biomac.4c00038\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.4c00038","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Viscoelastic and Birefringence Relaxation of Individualized Cellulose Nanofibers in the Dilute and Semidilute Regions
Viscoelastic relaxation mechanisms of individualized cellulose nanofibers (iCNFs) dispersed in glycerol in the dilute and semidilute regions were investigated by linear viscoelastic and dynamic birefringence measurements. The birefringence relaxation of the iCNFs was described by the orientational and curvature modes of an existing viscoelastic theory for ideal semiflexible polymers (Shankar–Pasquali–Morse theory). However, the Shankar–Pasquali–Morse theory could not fully describe the iCNF viscoelastic relaxation at high frequencies. Considering the results for birefringence relaxation, the experimental tension mode of the iCNFs was evaluated to be higher than the theoretical value. These results show that the viscoelastic relaxations of the iCNFs are different from those of ideal semiflexible polymers, in contrast to cellulose nanocrystals (CNCs). As the iCNF concentration increased, the orientational mode dramatically slowed, which was more drastic than other semiflexible polymers, including CNCs. This anomalous behavior is likely due to the nonideal nature of iCNFs.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.