Said J. Cifuentes, Natalia A. Theran-Suarez, Carolina Rivera-Crespo, Leonel Velez-Roman, Bryan Thacker, Charles Glass and Maribella Domenech*,
{"title":"硫酸肝素-胶原表面多层膜支持间充质干细胞的无血清微载体培养","authors":"Said J. Cifuentes, Natalia A. Theran-Suarez, Carolina Rivera-Crespo, Leonel Velez-Roman, Bryan Thacker, Charles Glass and Maribella Domenech*, ","doi":"10.1021/acsbiomaterials.4c0100810.1021/acsbiomaterials.4c01008","DOIUrl":null,"url":null,"abstract":"<p >The increasing cost of high-volume cultures and dependence on serum and growth factor supplementation limit the affordability of mesenchymal stromal cell (MSC) therapies. This has spurred interest in developing strategies that support adherent cell expansion while reducing raw material costs. Culture surfaces coated with sulfated glycosaminoglycans (GAGs), specifically heparan sulfate (HS), are an alternative to prolong growth factor retention in cell cultures. Unlike heparin, recombinant HS (rHS) offers strong binding affinity for multiple growth factors and extracellular matrix components, such as collagen I, without undesirable anticoagulant effects or xenobiotic health risks. The potential of rHS as a factor reservoir in MSC cultures remains underexplored. This study investigated the impact of rHS on the growth and anti-inflammatory properties of undifferentiated bone marrow MSCs in both planar and microcarrier-based cultures. It was hypothesized that rHS would enable MSC growth with minimal growth factor supplementation in a sulfation level-dependent manner. Cell culture surfaces were assembled via the layer-by-layer (LbL) method, combining alternating collagen I (COL) and rHS. These bilayers support cell adhesion and enable the incorporation of distinct sulfation levels on the culture surface. Examination of pro-mitogenic FGF and immunostimulatory IFN-γ release dynamics confirmed prolonged availability and sulfate level dependencies. Sulfated surfaces supported cell growth in low serum (2% FBS) and serum-free (SF) media at levels equivalent to standard culture conditions. Cell growth on rHS-coated surfaces in SF was comparable to that on heparin-coated surfaces and commercial surface-coated microcarriers in low serum. These growth benefits were observed in both planar and microcarrier (μCs) cultures. Additionally, rHS surfaces reduced β-galactosidase expression relative to uncoated surfaces, delaying cell senescence. Multivariate analysis of cytokines in conditioned media indicated that rHS-containing surfaces enhanced cytokine levels relative to uncoated surfaces during IFN-γ stimulation and correlated with decreased pro-inflammatory macrophage activity. Overall, utilizing highly sulfated rHS with COL reduces the need for exogenous growth factors and effectively supports MSC growth and anti-inflammatory potency on planar and microcarrier surfaces under minimal factor supplementation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heparan Sulfate-Collagen Surface Multilayers Support Serum-Free Microcarrier Culture of Mesenchymal Stem Cells\",\"authors\":\"Said J. Cifuentes, Natalia A. Theran-Suarez, Carolina Rivera-Crespo, Leonel Velez-Roman, Bryan Thacker, Charles Glass and Maribella Domenech*, \",\"doi\":\"10.1021/acsbiomaterials.4c0100810.1021/acsbiomaterials.4c01008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The increasing cost of high-volume cultures and dependence on serum and growth factor supplementation limit the affordability of mesenchymal stromal cell (MSC) therapies. This has spurred interest in developing strategies that support adherent cell expansion while reducing raw material costs. Culture surfaces coated with sulfated glycosaminoglycans (GAGs), specifically heparan sulfate (HS), are an alternative to prolong growth factor retention in cell cultures. Unlike heparin, recombinant HS (rHS) offers strong binding affinity for multiple growth factors and extracellular matrix components, such as collagen I, without undesirable anticoagulant effects or xenobiotic health risks. The potential of rHS as a factor reservoir in MSC cultures remains underexplored. This study investigated the impact of rHS on the growth and anti-inflammatory properties of undifferentiated bone marrow MSCs in both planar and microcarrier-based cultures. It was hypothesized that rHS would enable MSC growth with minimal growth factor supplementation in a sulfation level-dependent manner. Cell culture surfaces were assembled via the layer-by-layer (LbL) method, combining alternating collagen I (COL) and rHS. These bilayers support cell adhesion and enable the incorporation of distinct sulfation levels on the culture surface. Examination of pro-mitogenic FGF and immunostimulatory IFN-γ release dynamics confirmed prolonged availability and sulfate level dependencies. Sulfated surfaces supported cell growth in low serum (2% FBS) and serum-free (SF) media at levels equivalent to standard culture conditions. Cell growth on rHS-coated surfaces in SF was comparable to that on heparin-coated surfaces and commercial surface-coated microcarriers in low serum. These growth benefits were observed in both planar and microcarrier (μCs) cultures. Additionally, rHS surfaces reduced β-galactosidase expression relative to uncoated surfaces, delaying cell senescence. Multivariate analysis of cytokines in conditioned media indicated that rHS-containing surfaces enhanced cytokine levels relative to uncoated surfaces during IFN-γ stimulation and correlated with decreased pro-inflammatory macrophage activity. Overall, utilizing highly sulfated rHS with COL reduces the need for exogenous growth factors and effectively supports MSC growth and anti-inflammatory potency on planar and microcarrier surfaces under minimal factor supplementation.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01008\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Heparan Sulfate-Collagen Surface Multilayers Support Serum-Free Microcarrier Culture of Mesenchymal Stem Cells
The increasing cost of high-volume cultures and dependence on serum and growth factor supplementation limit the affordability of mesenchymal stromal cell (MSC) therapies. This has spurred interest in developing strategies that support adherent cell expansion while reducing raw material costs. Culture surfaces coated with sulfated glycosaminoglycans (GAGs), specifically heparan sulfate (HS), are an alternative to prolong growth factor retention in cell cultures. Unlike heparin, recombinant HS (rHS) offers strong binding affinity for multiple growth factors and extracellular matrix components, such as collagen I, without undesirable anticoagulant effects or xenobiotic health risks. The potential of rHS as a factor reservoir in MSC cultures remains underexplored. This study investigated the impact of rHS on the growth and anti-inflammatory properties of undifferentiated bone marrow MSCs in both planar and microcarrier-based cultures. It was hypothesized that rHS would enable MSC growth with minimal growth factor supplementation in a sulfation level-dependent manner. Cell culture surfaces were assembled via the layer-by-layer (LbL) method, combining alternating collagen I (COL) and rHS. These bilayers support cell adhesion and enable the incorporation of distinct sulfation levels on the culture surface. Examination of pro-mitogenic FGF and immunostimulatory IFN-γ release dynamics confirmed prolonged availability and sulfate level dependencies. Sulfated surfaces supported cell growth in low serum (2% FBS) and serum-free (SF) media at levels equivalent to standard culture conditions. Cell growth on rHS-coated surfaces in SF was comparable to that on heparin-coated surfaces and commercial surface-coated microcarriers in low serum. These growth benefits were observed in both planar and microcarrier (μCs) cultures. Additionally, rHS surfaces reduced β-galactosidase expression relative to uncoated surfaces, delaying cell senescence. Multivariate analysis of cytokines in conditioned media indicated that rHS-containing surfaces enhanced cytokine levels relative to uncoated surfaces during IFN-γ stimulation and correlated with decreased pro-inflammatory macrophage activity. Overall, utilizing highly sulfated rHS with COL reduces the need for exogenous growth factors and effectively supports MSC growth and anti-inflammatory potency on planar and microcarrier surfaces under minimal factor supplementation.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture