平行于平面墙的加速度中的量子费舍尔信息

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Ying Yang, Xiangyun Fu and Jiliang Jing
{"title":"平行于平面墙的加速度中的量子费舍尔信息","authors":"Ying Yang, Xiangyun Fu and Jiliang Jing","doi":"10.1088/1361-6382/ad7452","DOIUrl":null,"url":null,"abstract":"In this work, we devote to understand how boundaries can help improve parameter estimation against atomic decoherence and dissipation caused by relativistic motion. The system we considered is a two-level atom in uniform linear acceleration parallel to a planar wall in (3+1)-dimensional Minkowski spacetime, which is coupled to a massless scalar field with Dirichlet, Neumann or transparent boundary conditions at the wall. We find that the quantum Fisher information (QFI), which determines the ultimate estimation precision, depends on various factors, such as atomic motional trajectories, evolution time, atomic initial state, and the boundary condition. We identify the optimal estimation strategies that maximize the QFI through all the associated parameters, thus optimizing the estimation precision. Our results show that the QFI has different behaviors and even different magnitudes for different boundary cases. We also determine the boundary conditions that can effectively suppress the influence of atomic relativistic motion on the QFI. Our investigation may help advance the study of relativistic quantum information in cavity quantum electrodynamics.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Fisher information in acceleration parallel to a planar wall\",\"authors\":\"Ying Yang, Xiangyun Fu and Jiliang Jing\",\"doi\":\"10.1088/1361-6382/ad7452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we devote to understand how boundaries can help improve parameter estimation against atomic decoherence and dissipation caused by relativistic motion. The system we considered is a two-level atom in uniform linear acceleration parallel to a planar wall in (3+1)-dimensional Minkowski spacetime, which is coupled to a massless scalar field with Dirichlet, Neumann or transparent boundary conditions at the wall. We find that the quantum Fisher information (QFI), which determines the ultimate estimation precision, depends on various factors, such as atomic motional trajectories, evolution time, atomic initial state, and the boundary condition. We identify the optimal estimation strategies that maximize the QFI through all the associated parameters, thus optimizing the estimation precision. Our results show that the QFI has different behaviors and even different magnitudes for different boundary cases. We also determine the boundary conditions that can effectively suppress the influence of atomic relativistic motion on the QFI. Our investigation may help advance the study of relativistic quantum information in cavity quantum electrodynamics.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad7452\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad7452","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们致力于了解边界如何帮助改进参数估计,以抵御相对论运动引起的原子退相干和耗散。我们考虑的系统是一个平行于 (3+1)-dimensional Minkowski 时空中平面墙的匀速直线加速的两级原子,它与一个无质量标量场耦合,该标量场在平面墙处具有狄利克特、诺伊曼或透明边界条件。我们发现,决定最终估计精度的量子费雪信息(QFI)取决于各种因素,如原子运动轨迹、演化时间、原子初始状态和边界条件。我们确定了最优估计策略,通过所有相关参数使 QFI 最大化,从而优化估计精度。我们的结果表明,QFI 在不同的边界情况下有不同的表现,甚至有不同的大小。我们还确定了能有效抑制原子相对论运动对 QFI 影响的边界条件。我们的研究可能有助于推进空穴量子电动力学中相对论量子信息的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Fisher information in acceleration parallel to a planar wall
In this work, we devote to understand how boundaries can help improve parameter estimation against atomic decoherence and dissipation caused by relativistic motion. The system we considered is a two-level atom in uniform linear acceleration parallel to a planar wall in (3+1)-dimensional Minkowski spacetime, which is coupled to a massless scalar field with Dirichlet, Neumann or transparent boundary conditions at the wall. We find that the quantum Fisher information (QFI), which determines the ultimate estimation precision, depends on various factors, such as atomic motional trajectories, evolution time, atomic initial state, and the boundary condition. We identify the optimal estimation strategies that maximize the QFI through all the associated parameters, thus optimizing the estimation precision. Our results show that the QFI has different behaviors and even different magnitudes for different boundary cases. We also determine the boundary conditions that can effectively suppress the influence of atomic relativistic motion on the QFI. Our investigation may help advance the study of relativistic quantum information in cavity quantum electrodynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信