在有蒸汽存在的情况下,对集成二氧化碳捕获和甲烷化的双功能材料进行原位氢化

Daocheng Liu, Liangyong Chen
{"title":"在有蒸汽存在的情况下,对集成二氧化碳捕获和甲烷化的双功能材料进行原位氢化","authors":"Daocheng Liu,&nbsp;Liangyong Chen","doi":"10.1016/j.ccst.2024.100291","DOIUrl":null,"url":null,"abstract":"<div><p>The impacts of steam on hydrogenation of dual function materials (DFM) for Integrated CO<sub>2</sub> Capture and <em>in-situ</em> methanation (ICCM) is a new area requiring detailed investigations prior to industrialization. This work investigated impacts from steams on hydrogenation of Ru-Na<sub>2</sub>CO<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> DFM for ICCM that containing Na<sub>2</sub>O adsorbent, Ru sites, and γ-Al<sub>2</sub>O<sub>3</sub> support. DFM performance was examined in cyclic reactions as introducing external steam during hydrogenation, and the behaviors of adsorbed CO<sub>2</sub> species during hydrogenation were characterized by <em>in-situ</em> DRIFTS and H<sub>2</sub>-TPSR. CH₄ selectivity decreased sharply from 84.3 % to 1.2 % as increasing external steam concentrations to 20 vol.%, and the conversion of adsorbent component decreased from 298.5 μmol g<sup>-1</sup> to 167.1 μmol g<sup>-1</sup>. <em>b</em>-CO<sub>3</sub><sup>2-</sup> and <em>m</em>-CO<sub>3</sub><sup>2-</sup> formed at Na<sub>2</sub>CO<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> interface were the carbonate species that could be hydrogenated into CH<sub>4</sub>, some of which were desorbed into CO<sub>2</sub> due to moisture-driven desorption effects. With the presence of external steam in H<sub>2</sub> reactants, the conversion of carbonate species is a competing process between hydrogenation and moisture-driven desorption. In ICCM reaction with external steam present, <em>b</em>-CO<sub>3</sub><sup>2-</sup> was preferred to be desorbed into CO<sub>2</sub>; while for <em>m</em>-CO<sub>3</sub><sup>2-</sup>, desorption into CO<sub>2</sub> by steam and hydrogenation into CH<sub>4</sub> proceeded in parallel. Strong moisture-driven desorption effects from steam product were demonstrated in a fixed-bed reactor, which also led to rapid decrease of localized selectivity of CH<sub>4</sub> along bed height.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824001039/pdfft?md5=40bbc551bf4434d0f251bd58b0bc43ce&pid=1-s2.0-S2772656824001039-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In-situ hydrogenation of dual function material for integrated CO2 capture and methanation with the presence of steam\",\"authors\":\"Daocheng Liu,&nbsp;Liangyong Chen\",\"doi\":\"10.1016/j.ccst.2024.100291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The impacts of steam on hydrogenation of dual function materials (DFM) for Integrated CO<sub>2</sub> Capture and <em>in-situ</em> methanation (ICCM) is a new area requiring detailed investigations prior to industrialization. This work investigated impacts from steams on hydrogenation of Ru-Na<sub>2</sub>CO<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> DFM for ICCM that containing Na<sub>2</sub>O adsorbent, Ru sites, and γ-Al<sub>2</sub>O<sub>3</sub> support. DFM performance was examined in cyclic reactions as introducing external steam during hydrogenation, and the behaviors of adsorbed CO<sub>2</sub> species during hydrogenation were characterized by <em>in-situ</em> DRIFTS and H<sub>2</sub>-TPSR. CH₄ selectivity decreased sharply from 84.3 % to 1.2 % as increasing external steam concentrations to 20 vol.%, and the conversion of adsorbent component decreased from 298.5 μmol g<sup>-1</sup> to 167.1 μmol g<sup>-1</sup>. <em>b</em>-CO<sub>3</sub><sup>2-</sup> and <em>m</em>-CO<sub>3</sub><sup>2-</sup> formed at Na<sub>2</sub>CO<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> interface were the carbonate species that could be hydrogenated into CH<sub>4</sub>, some of which were desorbed into CO<sub>2</sub> due to moisture-driven desorption effects. With the presence of external steam in H<sub>2</sub> reactants, the conversion of carbonate species is a competing process between hydrogenation and moisture-driven desorption. In ICCM reaction with external steam present, <em>b</em>-CO<sub>3</sub><sup>2-</sup> was preferred to be desorbed into CO<sub>2</sub>; while for <em>m</em>-CO<sub>3</sub><sup>2-</sup>, desorption into CO<sub>2</sub> by steam and hydrogenation into CH<sub>4</sub> proceeded in parallel. Strong moisture-driven desorption effects from steam product were demonstrated in a fixed-bed reactor, which also led to rapid decrease of localized selectivity of CH<sub>4</sub> along bed height.</p></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772656824001039/pdfft?md5=40bbc551bf4434d0f251bd58b0bc43ce&pid=1-s2.0-S2772656824001039-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824001039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蒸汽对用于二氧化碳捕集和原位甲烷化(ICCM)的双功能材料(DFM)氢化的影响是一个新领域,需要在工业化之前进行详细研究。本研究调查了蒸汽对用于 ICCM 的 Ru-Na2CO3/γ-Al2O3 DFM 加氢的影响,该 DFM 含有 Na2O 吸附剂、Ru 位点和 γ-Al2O3 支持物。在加氢过程中引入外部蒸汽的循环反应中检验了 DFM 的性能,并通过原位 DRIFTS 和 H2-TPSR 表征了加氢过程中吸附的 CO2 物种的行为。在 Na2CO3/γ-Al2O3 界面形成的 b-CO32- 和 m-CO32- 是可氢化成 CH4 的碳酸盐物种,其中一些由于水分驱动的解吸效应而解吸成 CO2。在 H2 反应物中存在外部蒸汽的情况下,碳酸盐物种的转化是氢化和湿气驱动解吸之间的竞争过程。在存在外部蒸汽的 ICCM 反应中,b-CO32- 优先解吸为 CO2;而对于 m-CO32-,蒸汽解吸为 CO2 和氢化为 CH4 的过程同时进行。在固定床反应器中,蒸汽产物产生了强烈的湿气驱动解吸效应,这也导致 CH4 的局部选择性沿床层高度迅速降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In-situ hydrogenation of dual function material for integrated CO2 capture and methanation with the presence of steam

In-situ hydrogenation of dual function material for integrated CO2 capture and methanation with the presence of steam

The impacts of steam on hydrogenation of dual function materials (DFM) for Integrated CO2 Capture and in-situ methanation (ICCM) is a new area requiring detailed investigations prior to industrialization. This work investigated impacts from steams on hydrogenation of Ru-Na2CO3/γ-Al2O3 DFM for ICCM that containing Na2O adsorbent, Ru sites, and γ-Al2O3 support. DFM performance was examined in cyclic reactions as introducing external steam during hydrogenation, and the behaviors of adsorbed CO2 species during hydrogenation were characterized by in-situ DRIFTS and H2-TPSR. CH₄ selectivity decreased sharply from 84.3 % to 1.2 % as increasing external steam concentrations to 20 vol.%, and the conversion of adsorbent component decreased from 298.5 μmol g-1 to 167.1 μmol g-1. b-CO32- and m-CO32- formed at Na2CO3/γ-Al2O3 interface were the carbonate species that could be hydrogenated into CH4, some of which were desorbed into CO2 due to moisture-driven desorption effects. With the presence of external steam in H2 reactants, the conversion of carbonate species is a competing process between hydrogenation and moisture-driven desorption. In ICCM reaction with external steam present, b-CO32- was preferred to be desorbed into CO2; while for m-CO32-, desorption into CO2 by steam and hydrogenation into CH4 proceeded in parallel. Strong moisture-driven desorption effects from steam product were demonstrated in a fixed-bed reactor, which also led to rapid decrease of localized selectivity of CH4 along bed height.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信