纳米绕线金刚石中的量子约束效应

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shukuan Guo , Zhengping Su , Liangliang Chen , Yu Duan , Yeqiang Bu , Anmin Nie , Hongtao Wang , Yongjun Tian , Wei Yang
{"title":"纳米绕线金刚石中的量子约束效应","authors":"Shukuan Guo ,&nbsp;Zhengping Su ,&nbsp;Liangliang Chen ,&nbsp;Yu Duan ,&nbsp;Yeqiang Bu ,&nbsp;Anmin Nie ,&nbsp;Hongtao Wang ,&nbsp;Yongjun Tian ,&nbsp;Wei Yang","doi":"10.1016/j.mtnano.2024.100514","DOIUrl":null,"url":null,"abstract":"<div><p>The success in enhancing diamond by introducing nanotwins opens a new frontier in the development of superhard materials. However, the underlying hardening mechanism of nanotwinned diamond (nt-diamond) remains elusive and a persistent research focus. In this study, we employ first-principles calculations to unveil the performance enhancement in nt-diamond mediated by quantum confinement effect. This effect is characterized by the non-uniform valence charge density of C-C bonds near the twin boundary, leading to incomplete bond breakage at the onset of elastic instability and identified as the key factor in delaying cracking. These findings not only contribute to establishing the theory of hardness in superhard materials, but also suggest new avenues for enhancing their mechanical performance through the introduction of heterogeneous structures and dopant atoms aligned with the principle of quantum confinement effect.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100514"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum confinement effect in nanotwinned diamond\",\"authors\":\"Shukuan Guo ,&nbsp;Zhengping Su ,&nbsp;Liangliang Chen ,&nbsp;Yu Duan ,&nbsp;Yeqiang Bu ,&nbsp;Anmin Nie ,&nbsp;Hongtao Wang ,&nbsp;Yongjun Tian ,&nbsp;Wei Yang\",\"doi\":\"10.1016/j.mtnano.2024.100514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The success in enhancing diamond by introducing nanotwins opens a new frontier in the development of superhard materials. However, the underlying hardening mechanism of nanotwinned diamond (nt-diamond) remains elusive and a persistent research focus. In this study, we employ first-principles calculations to unveil the performance enhancement in nt-diamond mediated by quantum confinement effect. This effect is characterized by the non-uniform valence charge density of C-C bonds near the twin boundary, leading to incomplete bond breakage at the onset of elastic instability and identified as the key factor in delaying cracking. These findings not only contribute to establishing the theory of hardness in superhard materials, but also suggest new avenues for enhancing their mechanical performance through the introduction of heterogeneous structures and dopant atoms aligned with the principle of quantum confinement effect.</p></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"28 \",\"pages\":\"Article 100514\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842024000646\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000646","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过引入纳米孪晶成功地提高了金刚石的硬度,为超硬材料的开发开辟了新的领域。然而,纳米晶簇金刚石(nt-diamond)的潜在硬化机理仍然难以捉摸,是一个长期的研究重点。在本研究中,我们利用第一原理计算揭示了量子约束效应介导的纳米金刚石性能提升。这种效应的特点是孪晶边界附近 C-C 键的价电荷密度不均匀,导致弹性不稳定性开始时键的不完全断裂,并被认为是延迟开裂的关键因素。这些发现不仅有助于建立超硬材料的硬度理论,还提出了通过引入符合量子约束效应原理的异质结构和掺杂原子来提高其机械性能的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum confinement effect in nanotwinned diamond

The success in enhancing diamond by introducing nanotwins opens a new frontier in the development of superhard materials. However, the underlying hardening mechanism of nanotwinned diamond (nt-diamond) remains elusive and a persistent research focus. In this study, we employ first-principles calculations to unveil the performance enhancement in nt-diamond mediated by quantum confinement effect. This effect is characterized by the non-uniform valence charge density of C-C bonds near the twin boundary, leading to incomplete bond breakage at the onset of elastic instability and identified as the key factor in delaying cracking. These findings not only contribute to establishing the theory of hardness in superhard materials, but also suggest new avenues for enhancing their mechanical performance through the introduction of heterogeneous structures and dopant atoms aligned with the principle of quantum confinement effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信