Shukuan Guo , Zhengping Su , Liangliang Chen , Yu Duan , Yeqiang Bu , Anmin Nie , Hongtao Wang , Yongjun Tian , Wei Yang
{"title":"纳米绕线金刚石中的量子约束效应","authors":"Shukuan Guo , Zhengping Su , Liangliang Chen , Yu Duan , Yeqiang Bu , Anmin Nie , Hongtao Wang , Yongjun Tian , Wei Yang","doi":"10.1016/j.mtnano.2024.100514","DOIUrl":null,"url":null,"abstract":"<div><p>The success in enhancing diamond by introducing nanotwins opens a new frontier in the development of superhard materials. However, the underlying hardening mechanism of nanotwinned diamond (nt-diamond) remains elusive and a persistent research focus. In this study, we employ first-principles calculations to unveil the performance enhancement in nt-diamond mediated by quantum confinement effect. This effect is characterized by the non-uniform valence charge density of C-C bonds near the twin boundary, leading to incomplete bond breakage at the onset of elastic instability and identified as the key factor in delaying cracking. These findings not only contribute to establishing the theory of hardness in superhard materials, but also suggest new avenues for enhancing their mechanical performance through the introduction of heterogeneous structures and dopant atoms aligned with the principle of quantum confinement effect.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100514"},"PeriodicalIF":8.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum confinement effect in nanotwinned diamond\",\"authors\":\"Shukuan Guo , Zhengping Su , Liangliang Chen , Yu Duan , Yeqiang Bu , Anmin Nie , Hongtao Wang , Yongjun Tian , Wei Yang\",\"doi\":\"10.1016/j.mtnano.2024.100514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The success in enhancing diamond by introducing nanotwins opens a new frontier in the development of superhard materials. However, the underlying hardening mechanism of nanotwinned diamond (nt-diamond) remains elusive and a persistent research focus. In this study, we employ first-principles calculations to unveil the performance enhancement in nt-diamond mediated by quantum confinement effect. This effect is characterized by the non-uniform valence charge density of C-C bonds near the twin boundary, leading to incomplete bond breakage at the onset of elastic instability and identified as the key factor in delaying cracking. These findings not only contribute to establishing the theory of hardness in superhard materials, but also suggest new avenues for enhancing their mechanical performance through the introduction of heterogeneous structures and dopant atoms aligned with the principle of quantum confinement effect.</p></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"28 \",\"pages\":\"Article 100514\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842024000646\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000646","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The success in enhancing diamond by introducing nanotwins opens a new frontier in the development of superhard materials. However, the underlying hardening mechanism of nanotwinned diamond (nt-diamond) remains elusive and a persistent research focus. In this study, we employ first-principles calculations to unveil the performance enhancement in nt-diamond mediated by quantum confinement effect. This effect is characterized by the non-uniform valence charge density of C-C bonds near the twin boundary, leading to incomplete bond breakage at the onset of elastic instability and identified as the key factor in delaying cracking. These findings not only contribute to establishing the theory of hardness in superhard materials, but also suggest new avenues for enhancing their mechanical performance through the introduction of heterogeneous structures and dopant atoms aligned with the principle of quantum confinement effect.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites