还原度对化学循环水气反向转移反应过程中 Fe2O3-MgAl2O4 储氧材料稳定性的影响

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"还原度对化学循环水气反向转移反应过程中 Fe2O3-MgAl2O4 储氧材料稳定性的影响","authors":"","doi":"10.1016/j.jcou.2024.102917","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the long-term stability and performance in chemical looping reverse water-gas shift reaction (rWGS) of a 50 wt% Fe<sub>2</sub>O<sub>3</sub>-MgAl<sub>2</sub>O<sub>4</sub> material produced using an industrial method. While prior research predominantly focuses on short-term deactivation of lab-scale materials, this research explores the complex relationship between the cycle duration, material performance and stability of an upscaled material. Through comprehensive analyses, successful upscaling is demonstrated. Performance tests on the upscaled material reveal that shorter cycle durations lead to superior CO space-time yield, with a steady-state deactivation rate of 0.07 %/h over 28 days on stream. During the first 225 h of redox time, the equilibrium CO<sub>2</sub> conversion for catalytic rWGS is exceeded. Characterization post-cycling identifies key deactivation mechanisms, underscoring the challenge of maintaining stability over extended cycles. Rietveld refinement and STEM-EDX mapping indicate the formation of Fe<sub>x</sub>Mg<sub>1-x</sub>Al<sub>2</sub>O<sub>4</sub> and MgFe<sub>2</sub>O<sub>4</sub> phases, the former of which contributes to reduced redox capacity, as indicated by temperature-programmed reduction measurements before and after cycles. Optimal performance was observed with shorter cycles despite lower material utilization, emphasizing the trade-offs between performance and stability. This research provides comprehensive insights for optimizing chemical looping CO<sub>2</sub> utilization processes, vital for advancing scalable and economically viable solutions to combat carbon emissions.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221298202400252X/pdfft?md5=a397bc55e76a5c8a8a29689f661f1457&pid=1-s2.0-S221298202400252X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of reduction degree on stability of Fe2O3-MgAl2O4 oxygen storage materials during chemical looping reverse water-gas shift reaction\",\"authors\":\"\",\"doi\":\"10.1016/j.jcou.2024.102917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the long-term stability and performance in chemical looping reverse water-gas shift reaction (rWGS) of a 50 wt% Fe<sub>2</sub>O<sub>3</sub>-MgAl<sub>2</sub>O<sub>4</sub> material produced using an industrial method. While prior research predominantly focuses on short-term deactivation of lab-scale materials, this research explores the complex relationship between the cycle duration, material performance and stability of an upscaled material. Through comprehensive analyses, successful upscaling is demonstrated. Performance tests on the upscaled material reveal that shorter cycle durations lead to superior CO space-time yield, with a steady-state deactivation rate of 0.07 %/h over 28 days on stream. During the first 225 h of redox time, the equilibrium CO<sub>2</sub> conversion for catalytic rWGS is exceeded. Characterization post-cycling identifies key deactivation mechanisms, underscoring the challenge of maintaining stability over extended cycles. Rietveld refinement and STEM-EDX mapping indicate the formation of Fe<sub>x</sub>Mg<sub>1-x</sub>Al<sub>2</sub>O<sub>4</sub> and MgFe<sub>2</sub>O<sub>4</sub> phases, the former of which contributes to reduced redox capacity, as indicated by temperature-programmed reduction measurements before and after cycles. Optimal performance was observed with shorter cycles despite lower material utilization, emphasizing the trade-offs between performance and stability. This research provides comprehensive insights for optimizing chemical looping CO<sub>2</sub> utilization processes, vital for advancing scalable and economically viable solutions to combat carbon emissions.</p></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221298202400252X/pdfft?md5=a397bc55e76a5c8a8a29689f661f1457&pid=1-s2.0-S221298202400252X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221298202400252X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221298202400252X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了使用工业方法生产的 50 wt% Fe2O3-MgAl2O4 材料在化学循环反向水气变换反应(rWGS)中的长期稳定性和性能。之前的研究主要关注实验室规模材料的短期失活,而本研究则探索了升级材料的循环持续时间、材料性能和稳定性之间的复杂关系。通过综合分析,证明了升级的成功。对升级材料进行的性能测试表明,较短的循环持续时间可获得较高的一氧化碳时空产率,28 天的稳定失活率为 0.07%/h。在前 225 小时的氧化还原时间内,催化 rWGS 的二氧化碳转化率超过了平衡转化率。循环后的表征确定了关键的失活机制,强调了在较长的循环中保持稳定所面临的挑战。里特维尔德细化和 STEM-EDX 制图表明形成了 FexMg1-xAl2O4 和 MgFe2O4 相,前者导致氧化还原能力降低,循环前后的温度编程还原测量也表明了这一点。尽管材料利用率较低,但在较短的循环周期内也能观察到最佳性能,这强调了性能与稳定性之间的权衡。这项研究为优化化学循环二氧化碳利用过程提供了全面的见解,对于推进可扩展的、经济上可行的碳减排解决方案至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of reduction degree on stability of Fe2O3-MgAl2O4 oxygen storage materials during chemical looping reverse water-gas shift reaction

This study investigates the long-term stability and performance in chemical looping reverse water-gas shift reaction (rWGS) of a 50 wt% Fe2O3-MgAl2O4 material produced using an industrial method. While prior research predominantly focuses on short-term deactivation of lab-scale materials, this research explores the complex relationship between the cycle duration, material performance and stability of an upscaled material. Through comprehensive analyses, successful upscaling is demonstrated. Performance tests on the upscaled material reveal that shorter cycle durations lead to superior CO space-time yield, with a steady-state deactivation rate of 0.07 %/h over 28 days on stream. During the first 225 h of redox time, the equilibrium CO2 conversion for catalytic rWGS is exceeded. Characterization post-cycling identifies key deactivation mechanisms, underscoring the challenge of maintaining stability over extended cycles. Rietveld refinement and STEM-EDX mapping indicate the formation of FexMg1-xAl2O4 and MgFe2O4 phases, the former of which contributes to reduced redox capacity, as indicated by temperature-programmed reduction measurements before and after cycles. Optimal performance was observed with shorter cycles despite lower material utilization, emphasizing the trade-offs between performance and stability. This research provides comprehensive insights for optimizing chemical looping CO2 utilization processes, vital for advancing scalable and economically viable solutions to combat carbon emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信