{"title":"用抗菌肽装饰的聚鞣酸包覆聚乳酸(PLGA)纳米粒子,用于协同治疗细菌和促进感染性伤口愈合","authors":"","doi":"10.1016/j.colsurfb.2024.114217","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial infections pose a great threat to human health. Therefore, the development of new antibacterial agents or methods is in urgent need. In this study, we prepared polytannic acid (pTA)-coated PLGA nanoparticles decorated with Dermaseptin-PP (Der), an antimicrobial peptide (AMP), on the surface to obtain PLGA-pTA-Der. This nanoplatform could combine AMPs with photothermal treatment (PTT) mediated by pTA to achieve synergistic bacterial killing. The results of <em>in vitro</em> experiments showed that the PLGA-pTA-Der nanoparticles could eliminate nearly 99 % of <em>Escherichia coli</em> (<em>E. coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>) upon near-infrared (NIR) laser irradiation (2.0 W·cm<sup>−2</sup>, 5 min), demonstrating excellent antibacterial properties. In addition, the results of atomic force microscopy (AFM) revealed that PLGA-pTA-Der with laser irradiation can greatly destroy the mechanical integrity of the bacterial outer membrane. And the presence of Der could exacerbate the heat damage caused by the PLGA-pTA NPs to the bacteria, which is helpful to reduce the critical temperature required for bacteria killing by PTT. <em>In vivo</em> experiments showed that PLGA-pTA-Der nanoparticles with laser irradiation significantly accelerated the wound healing process and inhibited the growth of bacterial. Moreover, it can achieve a strong photothermal antibacterial effect at a mild temperature (<45℃) and does not cause any obvious thermal damage to the surrounding normal skin tissues. Results of immunofluorescence staining showed that the expression of CD31 (a marker of new blood vessel formation) was significantly higher in the PLGA-pTA-Der + laser group than other groups, while the pro-inflammatory molecule TNF-α was significantly lower, indicating that PLGA-pTA-Der nanoparticles accelerated wound healing by enhancing angiogenesis and reducing the inflammatory response. In conclusion, PLGA-pTA-Der nanoparticles was a promising antimicrobial nanoplatform for treating bacterial infections and promoting wound healing.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly-tannic acid coated PLGA nanoparticle decorated with antimicrobial peptide for synergistic bacteria treatment and infectious wound healing promotion\",\"authors\":\"\",\"doi\":\"10.1016/j.colsurfb.2024.114217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bacterial infections pose a great threat to human health. Therefore, the development of new antibacterial agents or methods is in urgent need. In this study, we prepared polytannic acid (pTA)-coated PLGA nanoparticles decorated with Dermaseptin-PP (Der), an antimicrobial peptide (AMP), on the surface to obtain PLGA-pTA-Der. This nanoplatform could combine AMPs with photothermal treatment (PTT) mediated by pTA to achieve synergistic bacterial killing. The results of <em>in vitro</em> experiments showed that the PLGA-pTA-Der nanoparticles could eliminate nearly 99 % of <em>Escherichia coli</em> (<em>E. coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>) upon near-infrared (NIR) laser irradiation (2.0 W·cm<sup>−2</sup>, 5 min), demonstrating excellent antibacterial properties. In addition, the results of atomic force microscopy (AFM) revealed that PLGA-pTA-Der with laser irradiation can greatly destroy the mechanical integrity of the bacterial outer membrane. And the presence of Der could exacerbate the heat damage caused by the PLGA-pTA NPs to the bacteria, which is helpful to reduce the critical temperature required for bacteria killing by PTT. <em>In vivo</em> experiments showed that PLGA-pTA-Der nanoparticles with laser irradiation significantly accelerated the wound healing process and inhibited the growth of bacterial. Moreover, it can achieve a strong photothermal antibacterial effect at a mild temperature (<45℃) and does not cause any obvious thermal damage to the surrounding normal skin tissues. Results of immunofluorescence staining showed that the expression of CD31 (a marker of new blood vessel formation) was significantly higher in the PLGA-pTA-Der + laser group than other groups, while the pro-inflammatory molecule TNF-α was significantly lower, indicating that PLGA-pTA-Der nanoparticles accelerated wound healing by enhancing angiogenesis and reducing the inflammatory response. In conclusion, PLGA-pTA-Der nanoparticles was a promising antimicrobial nanoplatform for treating bacterial infections and promoting wound healing.</p></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776524004764\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524004764","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Poly-tannic acid coated PLGA nanoparticle decorated with antimicrobial peptide for synergistic bacteria treatment and infectious wound healing promotion
Bacterial infections pose a great threat to human health. Therefore, the development of new antibacterial agents or methods is in urgent need. In this study, we prepared polytannic acid (pTA)-coated PLGA nanoparticles decorated with Dermaseptin-PP (Der), an antimicrobial peptide (AMP), on the surface to obtain PLGA-pTA-Der. This nanoplatform could combine AMPs with photothermal treatment (PTT) mediated by pTA to achieve synergistic bacterial killing. The results of in vitro experiments showed that the PLGA-pTA-Der nanoparticles could eliminate nearly 99 % of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) upon near-infrared (NIR) laser irradiation (2.0 W·cm−2, 5 min), demonstrating excellent antibacterial properties. In addition, the results of atomic force microscopy (AFM) revealed that PLGA-pTA-Der with laser irradiation can greatly destroy the mechanical integrity of the bacterial outer membrane. And the presence of Der could exacerbate the heat damage caused by the PLGA-pTA NPs to the bacteria, which is helpful to reduce the critical temperature required for bacteria killing by PTT. In vivo experiments showed that PLGA-pTA-Der nanoparticles with laser irradiation significantly accelerated the wound healing process and inhibited the growth of bacterial. Moreover, it can achieve a strong photothermal antibacterial effect at a mild temperature (<45℃) and does not cause any obvious thermal damage to the surrounding normal skin tissues. Results of immunofluorescence staining showed that the expression of CD31 (a marker of new blood vessel formation) was significantly higher in the PLGA-pTA-Der + laser group than other groups, while the pro-inflammatory molecule TNF-α was significantly lower, indicating that PLGA-pTA-Der nanoparticles accelerated wound healing by enhancing angiogenesis and reducing the inflammatory response. In conclusion, PLGA-pTA-Der nanoparticles was a promising antimicrobial nanoplatform for treating bacterial infections and promoting wound healing.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.