{"title":"锰基联合干燥剂对加速桐油干燥过程的协同催化作用","authors":"","doi":"10.1016/j.porgcoat.2024.108792","DOIUrl":null,"url":null,"abstract":"<div><p>Although manganese-based driers with nitrogen- or oxygen-containing ligands can accelerate the surface drying of tung oil film, their mechanical property performance does not meet industrial requirements. To address this, the drying activities of manganese-based driers with nitrogen- and oxygen-containing ligands on tung oil film were investigated. The curing process of tung oil film catalyzed by the combination driers of Mn(OH)<sub>2</sub>(benz)<sub>2</sub>·Mn(H<sub>2</sub>O)<sub>2</sub>(acac)<sub>2</sub>, MnCl<sub>2</sub>(bipy)<sub>2</sub>·Mn(H<sub>2</sub>O)<sub>2</sub>(acac)<sub>2</sub>, and MnCl<sub>2</sub>(bipy)<sub>2</sub>·Mn(OH)<sub>2</sub>(benz)<sub>2</sub> was revealed using Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The results revealed that the combination driers enhanced the drying activities of Mn<sup>2+</sup> in tung oil due to a synergistic effect between Mn<sup>2+</sup> and its ligands. This process catalyzed the crosslinking of tung oil, giving the tung oil film a faster drying time, greater scratch resistance, increased hardness, improved flexibility, and greater thermal stability. These materials may replace traditional heavy metal driers to produce tung oil films with outstanding mechanical properties. Additionally, this paper describes the drying mechanism of these manganese-based driers with a combination of nitrogen-containing and oxygen-containing ligands and provides a new tung oil drying method.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic catalytic effects of combined manganese-based driers on accelerating the drying process of tung oil\",\"authors\":\"\",\"doi\":\"10.1016/j.porgcoat.2024.108792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although manganese-based driers with nitrogen- or oxygen-containing ligands can accelerate the surface drying of tung oil film, their mechanical property performance does not meet industrial requirements. To address this, the drying activities of manganese-based driers with nitrogen- and oxygen-containing ligands on tung oil film were investigated. The curing process of tung oil film catalyzed by the combination driers of Mn(OH)<sub>2</sub>(benz)<sub>2</sub>·Mn(H<sub>2</sub>O)<sub>2</sub>(acac)<sub>2</sub>, MnCl<sub>2</sub>(bipy)<sub>2</sub>·Mn(H<sub>2</sub>O)<sub>2</sub>(acac)<sub>2</sub>, and MnCl<sub>2</sub>(bipy)<sub>2</sub>·Mn(OH)<sub>2</sub>(benz)<sub>2</sub> was revealed using Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The results revealed that the combination driers enhanced the drying activities of Mn<sup>2+</sup> in tung oil due to a synergistic effect between Mn<sup>2+</sup> and its ligands. This process catalyzed the crosslinking of tung oil, giving the tung oil film a faster drying time, greater scratch resistance, increased hardness, improved flexibility, and greater thermal stability. These materials may replace traditional heavy metal driers to produce tung oil films with outstanding mechanical properties. Additionally, this paper describes the drying mechanism of these manganese-based driers with a combination of nitrogen-containing and oxygen-containing ligands and provides a new tung oil drying method.</p></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944024005848\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024005848","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synergistic catalytic effects of combined manganese-based driers on accelerating the drying process of tung oil
Although manganese-based driers with nitrogen- or oxygen-containing ligands can accelerate the surface drying of tung oil film, their mechanical property performance does not meet industrial requirements. To address this, the drying activities of manganese-based driers with nitrogen- and oxygen-containing ligands on tung oil film were investigated. The curing process of tung oil film catalyzed by the combination driers of Mn(OH)2(benz)2·Mn(H2O)2(acac)2, MnCl2(bipy)2·Mn(H2O)2(acac)2, and MnCl2(bipy)2·Mn(OH)2(benz)2 was revealed using Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The results revealed that the combination driers enhanced the drying activities of Mn2+ in tung oil due to a synergistic effect between Mn2+ and its ligands. This process catalyzed the crosslinking of tung oil, giving the tung oil film a faster drying time, greater scratch resistance, increased hardness, improved flexibility, and greater thermal stability. These materials may replace traditional heavy metal driers to produce tung oil films with outstanding mechanical properties. Additionally, this paper describes the drying mechanism of these manganese-based driers with a combination of nitrogen-containing and oxygen-containing ligands and provides a new tung oil drying method.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.