流动与结构相互作用的自由边界不粘性模型

IF 2.4 2区 数学 Q1 MATHEMATICS
Igor Kukavica , Amjad Tuffaha
{"title":"流动与结构相互作用的自由边界不粘性模型","authors":"Igor Kukavica ,&nbsp;Amjad Tuffaha","doi":"10.1016/j.jde.2024.08.045","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain the local existence and uniqueness for a system describing interaction of an incompressible inviscid fluid, modeled by the Euler equations, and an elastic plate, represented by the fourth-order hyperbolic PDE. We provide a priori estimates for the existence with the optimal regularity <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, for <span><math><mi>r</mi><mo>&gt;</mo><mn>2.5</mn></math></span>, on the fluid initial data and construct a unique solution of the system for initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span>. An important feature of the existence theorem is that the Taylor-Rayleigh instability does not occur. This is in contrast to the free-boundary Euler problem, where the stability condition on the initial pressure needs to be imposed.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A free boundary inviscid model of flow-structure interaction\",\"authors\":\"Igor Kukavica ,&nbsp;Amjad Tuffaha\",\"doi\":\"10.1016/j.jde.2024.08.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain the local existence and uniqueness for a system describing interaction of an incompressible inviscid fluid, modeled by the Euler equations, and an elastic plate, represented by the fourth-order hyperbolic PDE. We provide a priori estimates for the existence with the optimal regularity <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, for <span><math><mi>r</mi><mo>&gt;</mo><mn>2.5</mn></math></span>, on the fluid initial data and construct a unique solution of the system for initial data <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>3</mn></math></span>. An important feature of the existence theorem is that the Taylor-Rayleigh instability does not occur. This is in contrast to the free-boundary Euler problem, where the stability condition on the initial pressure needs to be imposed.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005278\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005278","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们获得了一个系统的局部存在性和唯一性,该系统描述了以欧拉方程为模型的不可压缩粘性流体和以四阶双曲 PDE 为代表的弹性板之间的相互作用。我们提供了流体初始数据 r>2.5 条件下最优正则 Hr 存在性的先验估计,并构建了 r≥3 条件下初始数据 u0∈Hr 系统的唯一解。存在定理的一个重要特征是泰勒-雷利不稳定性不会发生。这与自由边界欧拉问题不同,自由边界欧拉问题需要施加初始压力的稳定条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A free boundary inviscid model of flow-structure interaction

We obtain the local existence and uniqueness for a system describing interaction of an incompressible inviscid fluid, modeled by the Euler equations, and an elastic plate, represented by the fourth-order hyperbolic PDE. We provide a priori estimates for the existence with the optimal regularity Hr, for r>2.5, on the fluid initial data and construct a unique solution of the system for initial data u0Hr for r3. An important feature of the existence theorem is that the Taylor-Rayleigh instability does not occur. This is in contrast to the free-boundary Euler problem, where the stability condition on the initial pressure needs to be imposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信