{"title":"植物激素赤霉素在广布的树胶菌根和兰花菌根中的不同作用","authors":"Chihiro Miura , Takaya Tominaga , Hironori Kaminaka","doi":"10.1016/j.pbi.2024.102627","DOIUrl":null,"url":null,"abstract":"<div><p>Gibberellin (GA) is a classical plant hormone that regulates many physiological processes, such as plant growth, development, and environmental responses. GA inhibits arbuscular mycorrhizal (AM) symbiosis, the most ancient and widespread type of mycorrhizal symbiosis. Knowledge about mycorrhizal symbioses at the molecular level has been obtained mainly in model plants such as legumes and rice. In contrast, molecular mechanisms in non-model plants are still unclear. Recent studies have revealed the novel roles of GA in mycorrhizal symbioses: its positive effect in <em>Paris</em>-type AM symbiosis in <em>Eustoma grandiflorum</em> and its negative effect on both seed germination and mycorrhizal symbiosis in orchids. This review focuses on the recent data on GA function in AM and orchid mycorrhizal symbioses.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102627"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624001183/pdfft?md5=32a866ed3a292c936afd13dbb66abfee&pid=1-s2.0-S1369526624001183-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Different roles of the phytohormone gibberellin in the wide-spread arbuscular mycorrhiza and in orchid mycorrhiza\",\"authors\":\"Chihiro Miura , Takaya Tominaga , Hironori Kaminaka\",\"doi\":\"10.1016/j.pbi.2024.102627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gibberellin (GA) is a classical plant hormone that regulates many physiological processes, such as plant growth, development, and environmental responses. GA inhibits arbuscular mycorrhizal (AM) symbiosis, the most ancient and widespread type of mycorrhizal symbiosis. Knowledge about mycorrhizal symbioses at the molecular level has been obtained mainly in model plants such as legumes and rice. In contrast, molecular mechanisms in non-model plants are still unclear. Recent studies have revealed the novel roles of GA in mycorrhizal symbioses: its positive effect in <em>Paris</em>-type AM symbiosis in <em>Eustoma grandiflorum</em> and its negative effect on both seed germination and mycorrhizal symbiosis in orchids. This review focuses on the recent data on GA function in AM and orchid mycorrhizal symbioses.</p></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":\"82 \",\"pages\":\"Article 102627\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001183/pdfft?md5=32a866ed3a292c936afd13dbb66abfee&pid=1-s2.0-S1369526624001183-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526624001183\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001183","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
赤霉素(GA)是一种经典的植物激素,可调节植物生长、发育和环境反应等许多生理过程。GA 可抑制丛枝菌根(AM)共生,这是菌根共生中最古老、最普遍的一种类型。有关菌根共生的分子水平知识主要是从豆科植物和水稻等模式植物中获得的。相比之下,非模式植物的分子机制尚不清楚。最近的研究揭示了 GA 在菌根共生中的新作用:它对桔梗的巴黎型 AM 共生有积极作用,对兰花的种子萌发和菌根共生有消极作用。本综述将重点介绍有关 GA 在 AM 和兰花菌根共生中功能的最新数据。
Different roles of the phytohormone gibberellin in the wide-spread arbuscular mycorrhiza and in orchid mycorrhiza
Gibberellin (GA) is a classical plant hormone that regulates many physiological processes, such as plant growth, development, and environmental responses. GA inhibits arbuscular mycorrhizal (AM) symbiosis, the most ancient and widespread type of mycorrhizal symbiosis. Knowledge about mycorrhizal symbioses at the molecular level has been obtained mainly in model plants such as legumes and rice. In contrast, molecular mechanisms in non-model plants are still unclear. Recent studies have revealed the novel roles of GA in mycorrhizal symbioses: its positive effect in Paris-type AM symbiosis in Eustoma grandiflorum and its negative effect on both seed germination and mycorrhizal symbiosis in orchids. This review focuses on the recent data on GA function in AM and orchid mycorrhizal symbioses.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.