{"title":"微调纳米粒子合成中的元素剂量是决定纳米粒子对植物生长影响的关键因素","authors":"","doi":"10.1016/j.plaphy.2024.109110","DOIUrl":null,"url":null,"abstract":"<div><p>This study elucidates the impact of element dose during nanoparticle (NPs) synthesis on plant growth indices. Novel NPs containing two essential micro-nutrients, zinc (Zn) and manganese (Mn), were co-doped on cerium oxide (CeO<sub>2</sub>) (ZnMnCe) with different ratios (1, 2, and 3%). The synthesized NPs were characterized by advanced analytical techniques (EDX, TEM, SEM, XPS, and XRD) and hydroponically applied to barley (<em>Hordeum vulgare</em> L.). The impact of ZnMnCe NPs on growth indices and plant nutrients was examined. SEM, HRTEM, and confocal microscopy were used to show the morphological and structural influences of ZnMnCe NPs. Results showed that the plant growth indices (root/leaf length, chlorophyll fluorescence, pigmentation, and biomass) were remarkably improved with a 1% Mn/Zn addition. Conversely, growth retardation, cell membrane damage, root morphology deformation, and genotoxicity were apparent by 3% of Mn/Zn addition. Overall, a significant improvement in growth was revealed when Mn and Zn were included at 1%. However, increasing concentrations (2% and 3%) impaired the growth. These results show that the element ratio used in NPs synthesis is essential in the plant's physiological response. Precise adjustment of element dosage during NPs synthesis determines whether the NPs are beneficial or harmful. This must be well-balanced for nanofertilizer production and plant applications.</p></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-tuning the element dose in nanoparticle synthesis is the critical factor determining nanoparticle's impact on plant growth\",\"authors\":\"\",\"doi\":\"10.1016/j.plaphy.2024.109110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study elucidates the impact of element dose during nanoparticle (NPs) synthesis on plant growth indices. Novel NPs containing two essential micro-nutrients, zinc (Zn) and manganese (Mn), were co-doped on cerium oxide (CeO<sub>2</sub>) (ZnMnCe) with different ratios (1, 2, and 3%). The synthesized NPs were characterized by advanced analytical techniques (EDX, TEM, SEM, XPS, and XRD) and hydroponically applied to barley (<em>Hordeum vulgare</em> L.). The impact of ZnMnCe NPs on growth indices and plant nutrients was examined. SEM, HRTEM, and confocal microscopy were used to show the morphological and structural influences of ZnMnCe NPs. Results showed that the plant growth indices (root/leaf length, chlorophyll fluorescence, pigmentation, and biomass) were remarkably improved with a 1% Mn/Zn addition. Conversely, growth retardation, cell membrane damage, root morphology deformation, and genotoxicity were apparent by 3% of Mn/Zn addition. Overall, a significant improvement in growth was revealed when Mn and Zn were included at 1%. However, increasing concentrations (2% and 3%) impaired the growth. These results show that the element ratio used in NPs synthesis is essential in the plant's physiological response. Precise adjustment of element dosage during NPs synthesis determines whether the NPs are beneficial or harmful. This must be well-balanced for nanofertilizer production and plant applications.</p></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942824007782\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824007782","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Fine-tuning the element dose in nanoparticle synthesis is the critical factor determining nanoparticle's impact on plant growth
This study elucidates the impact of element dose during nanoparticle (NPs) synthesis on plant growth indices. Novel NPs containing two essential micro-nutrients, zinc (Zn) and manganese (Mn), were co-doped on cerium oxide (CeO2) (ZnMnCe) with different ratios (1, 2, and 3%). The synthesized NPs were characterized by advanced analytical techniques (EDX, TEM, SEM, XPS, and XRD) and hydroponically applied to barley (Hordeum vulgare L.). The impact of ZnMnCe NPs on growth indices and plant nutrients was examined. SEM, HRTEM, and confocal microscopy were used to show the morphological and structural influences of ZnMnCe NPs. Results showed that the plant growth indices (root/leaf length, chlorophyll fluorescence, pigmentation, and biomass) were remarkably improved with a 1% Mn/Zn addition. Conversely, growth retardation, cell membrane damage, root morphology deformation, and genotoxicity were apparent by 3% of Mn/Zn addition. Overall, a significant improvement in growth was revealed when Mn and Zn were included at 1%. However, increasing concentrations (2% and 3%) impaired the growth. These results show that the element ratio used in NPs synthesis is essential in the plant's physiological response. Precise adjustment of element dosage during NPs synthesis determines whether the NPs are beneficial or harmful. This must be well-balanced for nanofertilizer production and plant applications.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.