第二代镍基单晶超级合金中的氢捕集和脆化现象

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Guangxian Lu , Yunsong Zhao , Tingting Zhao , Yanhui Chen , William Yi Wang , Zhixun Wen
{"title":"第二代镍基单晶超级合金中的氢捕集和脆化现象","authors":"Guangxian Lu ,&nbsp;Yunsong Zhao ,&nbsp;Tingting Zhao ,&nbsp;Yanhui Chen ,&nbsp;William Yi Wang ,&nbsp;Zhixun Wen","doi":"10.1016/j.msea.2024.147188","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the hydrogen trapping capability and hydrogen embrittlement (HE) of a second-generation single crystal (SX) superalloy. Embrittlement susceptibility is greater as the duration of hydrogen charging is extended. The presence of hydrogen induces cleavage, micro-crack formation and denser slip traces. Moreover, hydrogen facilitates the formation of nano-voids and the activation of high-density dislocations, leading to denser slip bands which serve as initiation sites for micro-cracks. In addition, the desorption activation energy of hydrogen trapped at dislocations and soluble in the γ matrix is 33.7 kJ/mol, and hydrogen trapped at the γ/γ′ interface and vacancies is 42.4 kJ/mol. First-principles calculations have indicated that hydrogen reduces the binding strength at the γ/γ′ interface, which promotes the propagation of micro-cracks.</p></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"915 ","pages":"Article 147188"},"PeriodicalIF":7.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen trapping and embrittlement in a second-generation Ni-based single crystal superalloy\",\"authors\":\"Guangxian Lu ,&nbsp;Yunsong Zhao ,&nbsp;Tingting Zhao ,&nbsp;Yanhui Chen ,&nbsp;William Yi Wang ,&nbsp;Zhixun Wen\",\"doi\":\"10.1016/j.msea.2024.147188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the hydrogen trapping capability and hydrogen embrittlement (HE) of a second-generation single crystal (SX) superalloy. Embrittlement susceptibility is greater as the duration of hydrogen charging is extended. The presence of hydrogen induces cleavage, micro-crack formation and denser slip traces. Moreover, hydrogen facilitates the formation of nano-voids and the activation of high-density dislocations, leading to denser slip bands which serve as initiation sites for micro-cracks. In addition, the desorption activation energy of hydrogen trapped at dislocations and soluble in the γ matrix is 33.7 kJ/mol, and hydrogen trapped at the γ/γ′ interface and vacancies is 42.4 kJ/mol. First-principles calculations have indicated that hydrogen reduces the binding strength at the γ/γ′ interface, which promotes the propagation of micro-cracks.</p></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"915 \",\"pages\":\"Article 147188\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509324011195\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324011195","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了第二代单晶(SX)超级合金的氢捕获能力和氢脆(HE)问题。随着充氢时间的延长,脆化敏感性也会增加。氢的存在会诱发劈裂、微裂纹的形成和更密集的滑移痕迹。此外,氢还能促进纳米空洞的形成和高密度位错的激活,从而产生更密集的滑移带,作为微裂纹的起始点。此外,滞留在位错处并溶于γ基质中的氢的解吸活化能为 33.7 kJ/mol,而滞留在γ/γ′界面和空位处的氢的解吸活化能为 42.4 kJ/mol。第一原理计算表明,氢会降低γ/γ′界面的结合强度,从而促进微裂缝的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen trapping and embrittlement in a second-generation Ni-based single crystal superalloy

This study explores the hydrogen trapping capability and hydrogen embrittlement (HE) of a second-generation single crystal (SX) superalloy. Embrittlement susceptibility is greater as the duration of hydrogen charging is extended. The presence of hydrogen induces cleavage, micro-crack formation and denser slip traces. Moreover, hydrogen facilitates the formation of nano-voids and the activation of high-density dislocations, leading to denser slip bands which serve as initiation sites for micro-cracks. In addition, the desorption activation energy of hydrogen trapped at dislocations and soluble in the γ matrix is 33.7 kJ/mol, and hydrogen trapped at the γ/γ′ interface and vacancies is 42.4 kJ/mol. First-principles calculations have indicated that hydrogen reduces the binding strength at the γ/γ′ interface, which promotes the propagation of micro-cracks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信