{"title":"一种新颖的日前建筑能源需求预测方法,为能源市场提供灵活性服务","authors":"","doi":"10.1016/j.ijepes.2024.110207","DOIUrl":null,"url":null,"abstract":"<div><p>In future smart grid environment, local energy markets will become a reality to provide flexibility. Consequently, it will be essential not only to implement accurate energy consumption forecasters at the building level to determine which buildings can provide the required flexibility, but also at an aggregated level to anticipate power system boundary conditions. Thus, both forecasters play a key role in supporting the reliable and secure operation of smart grids and developing future demand response strategies. Although there is a piece of literature that addressed energy demand forecasting for day-ahead horizons, proposed algorithms only focused on improving accuracy neglecting energy markets technical boundary conditions. This study presents a novel methodology based on random forest machine learning algorithm to predict day-ahead energy demand at individual buildings with a 15-minute resolution. Furthermore, an analysis has been conducted to assess whether the application of time-series decomposition techniques or shape factors can enhance the accuracy of the proposed methodology. The results indicate that the proposed methodology is effective and accurate, exhibiting a MAPE of 10.77% – 31.52% and an R<sup>2</sup> of 0.51–0.70 for individual buildings. These findings demonstrate the potential of the methodology for future energy markets.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524004289/pdfft?md5=c5d17de6c4fd3db90fd38c95fd030011&pid=1-s2.0-S0142061524004289-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel methodology for day-ahead buildings energy demand forecasting to provide flexibility services in energy markets\",\"authors\":\"\",\"doi\":\"10.1016/j.ijepes.2024.110207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In future smart grid environment, local energy markets will become a reality to provide flexibility. Consequently, it will be essential not only to implement accurate energy consumption forecasters at the building level to determine which buildings can provide the required flexibility, but also at an aggregated level to anticipate power system boundary conditions. Thus, both forecasters play a key role in supporting the reliable and secure operation of smart grids and developing future demand response strategies. Although there is a piece of literature that addressed energy demand forecasting for day-ahead horizons, proposed algorithms only focused on improving accuracy neglecting energy markets technical boundary conditions. This study presents a novel methodology based on random forest machine learning algorithm to predict day-ahead energy demand at individual buildings with a 15-minute resolution. Furthermore, an analysis has been conducted to assess whether the application of time-series decomposition techniques or shape factors can enhance the accuracy of the proposed methodology. The results indicate that the proposed methodology is effective and accurate, exhibiting a MAPE of 10.77% – 31.52% and an R<sup>2</sup> of 0.51–0.70 for individual buildings. These findings demonstrate the potential of the methodology for future energy markets.</p></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142061524004289/pdfft?md5=c5d17de6c4fd3db90fd38c95fd030011&pid=1-s2.0-S0142061524004289-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524004289\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524004289","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A novel methodology for day-ahead buildings energy demand forecasting to provide flexibility services in energy markets
In future smart grid environment, local energy markets will become a reality to provide flexibility. Consequently, it will be essential not only to implement accurate energy consumption forecasters at the building level to determine which buildings can provide the required flexibility, but also at an aggregated level to anticipate power system boundary conditions. Thus, both forecasters play a key role in supporting the reliable and secure operation of smart grids and developing future demand response strategies. Although there is a piece of literature that addressed energy demand forecasting for day-ahead horizons, proposed algorithms only focused on improving accuracy neglecting energy markets technical boundary conditions. This study presents a novel methodology based on random forest machine learning algorithm to predict day-ahead energy demand at individual buildings with a 15-minute resolution. Furthermore, an analysis has been conducted to assess whether the application of time-series decomposition techniques or shape factors can enhance the accuracy of the proposed methodology. The results indicate that the proposed methodology is effective and accurate, exhibiting a MAPE of 10.77% – 31.52% and an R2 of 0.51–0.70 for individual buildings. These findings demonstrate the potential of the methodology for future energy markets.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.