通过在铯镁氯化物中掺杂锌实现杂质增强型核价发光

Q2 Engineering
Daniel Rutstrom , Luis Stand , Maciej Kapusta , Dylan Windsor , Haixuan Xu , Charles L. Melcher , Mariya Zhuravleva
{"title":"通过在铯镁氯化物中掺杂锌实现杂质增强型核价发光","authors":"Daniel Rutstrom ,&nbsp;Luis Stand ,&nbsp;Maciej Kapusta ,&nbsp;Dylan Windsor ,&nbsp;Haixuan Xu ,&nbsp;Charles L. Melcher ,&nbsp;Mariya Zhuravleva","doi":"10.1016/j.omx.2024.100349","DOIUrl":null,"url":null,"abstract":"<div><p>Scintillators with faster timing capabilities are currently in high demand for use in radiation detection systems in the fields of nuclear and medical physics. The limited number of suitable materials that meet the performance criteria of next generation detection systems presents an opportunity for discovery of new fast scintillator materials. In this work, the effects of doping several ultrafast core-valence luminescent (CVL) scintillators with divalent Zn is explored. Three compounds are investigated – CsMgCl<sub>3</sub>, Cs<sub>2</sub>MgCl<sub>4</sub>, and Cs<sub>3</sub>MgCl<sub>5</sub> – and single crystals of each doped with 5 mol% Zn are grown via the Bridgman method. Additionally, mixing across the full range of concentrations (from 0 % to 100 % Zn) is explored in the Cs<sub>2</sub>Mg<sub>1-x</sub>Zn<sub>x</sub>Cl<sub>4</sub> and Cs<sub>3</sub>Mg<sub>1-x</sub>Zn<sub>x</sub>Cl<sub>5</sub> systems. For low concentrations of Zn, light yields of all three compounds are enhanced (by up to ∼60 %) compared to the pure crystals, achieving what we believe to be the brightest known CVL, CsMgCl<sub>3</sub>:Zn 5 % (3400 ± 170 ph/MeV light yield). More importantly, Zn doping does not affect the ultrafast timing properties, with each composition maintaining a single-component decay time around 1–3 ns. A sub-100 ps coincidence time resolution (CTR) is also achieved with CsMgCl<sub>3</sub>:Zn 5 %. The results of this work reveal a new avenue towards obtaining brighter CVL materials, which could open up possibilities for more advanced ultrafast scintillators to be discovered moving forward.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"24 ","pages":"Article 100349"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000615/pdfft?md5=37508c1b6f9b347cedabc0a9e4f2b669&pid=1-s2.0-S2590147824000615-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impurity-enhanced core valence luminescence via Zn-doping in cesium magnesium chlorides\",\"authors\":\"Daniel Rutstrom ,&nbsp;Luis Stand ,&nbsp;Maciej Kapusta ,&nbsp;Dylan Windsor ,&nbsp;Haixuan Xu ,&nbsp;Charles L. Melcher ,&nbsp;Mariya Zhuravleva\",\"doi\":\"10.1016/j.omx.2024.100349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Scintillators with faster timing capabilities are currently in high demand for use in radiation detection systems in the fields of nuclear and medical physics. The limited number of suitable materials that meet the performance criteria of next generation detection systems presents an opportunity for discovery of new fast scintillator materials. In this work, the effects of doping several ultrafast core-valence luminescent (CVL) scintillators with divalent Zn is explored. Three compounds are investigated – CsMgCl<sub>3</sub>, Cs<sub>2</sub>MgCl<sub>4</sub>, and Cs<sub>3</sub>MgCl<sub>5</sub> – and single crystals of each doped with 5 mol% Zn are grown via the Bridgman method. Additionally, mixing across the full range of concentrations (from 0 % to 100 % Zn) is explored in the Cs<sub>2</sub>Mg<sub>1-x</sub>Zn<sub>x</sub>Cl<sub>4</sub> and Cs<sub>3</sub>Mg<sub>1-x</sub>Zn<sub>x</sub>Cl<sub>5</sub> systems. For low concentrations of Zn, light yields of all three compounds are enhanced (by up to ∼60 %) compared to the pure crystals, achieving what we believe to be the brightest known CVL, CsMgCl<sub>3</sub>:Zn 5 % (3400 ± 170 ph/MeV light yield). More importantly, Zn doping does not affect the ultrafast timing properties, with each composition maintaining a single-component decay time around 1–3 ns. A sub-100 ps coincidence time resolution (CTR) is also achieved with CsMgCl<sub>3</sub>:Zn 5 %. The results of this work reveal a new avenue towards obtaining brighter CVL materials, which could open up possibilities for more advanced ultrafast scintillators to be discovered moving forward.</p></div>\",\"PeriodicalId\":52192,\"journal\":{\"name\":\"Optical Materials: X\",\"volume\":\"24 \",\"pages\":\"Article 100349\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590147824000615/pdfft?md5=37508c1b6f9b347cedabc0a9e4f2b669&pid=1-s2.0-S2590147824000615-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590147824000615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147824000615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

目前,核物理学和医学物理学领域的辐射探测系统对具有更快定时能力的闪烁体需求量很大。符合下一代探测系统性能标准的合适材料数量有限,这为发现新型快速闪烁体材料提供了机会。在这项研究中,我们探讨了在几种超快核价发光(CVL)闪烁体中掺入二价锌的效果。研究了三种化合物--CsMgCl3、Cs2MgCl4 和 Cs3MgCl5,并通过布里奇曼方法生长了每种掺杂 5 摩尔锌的单晶体。此外,还在 Cs2Mg1-xZnxCl4 和 Cs3Mg1-xZnxCl5 系统中探索了整个浓度范围(从 0% 到 100% Zn)的混合情况。与纯晶体相比,低浓度锌的三种化合物的光产率都得到了提高(最高可达 60%),实现了我们认为是已知最亮的 CVL,即 CsMgCl3:Zn 5 %(光产率为 3400 ± 170 ph/MeV)。更重要的是,掺杂锌不会影响超快定时特性,每种成分都能保持约 1-3 毫微秒的单组分衰减时间。CsMgCl3:Zn 5 % 的巧合时间分辨率(CTR)也达到了 100 ps 以下。这项工作的结果揭示了获得更明亮的 CVL 材料的新途径,这为今后发现更先进的超快闪烁体提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impurity-enhanced core valence luminescence via Zn-doping in cesium magnesium chlorides

Scintillators with faster timing capabilities are currently in high demand for use in radiation detection systems in the fields of nuclear and medical physics. The limited number of suitable materials that meet the performance criteria of next generation detection systems presents an opportunity for discovery of new fast scintillator materials. In this work, the effects of doping several ultrafast core-valence luminescent (CVL) scintillators with divalent Zn is explored. Three compounds are investigated – CsMgCl3, Cs2MgCl4, and Cs3MgCl5 – and single crystals of each doped with 5 mol% Zn are grown via the Bridgman method. Additionally, mixing across the full range of concentrations (from 0 % to 100 % Zn) is explored in the Cs2Mg1-xZnxCl4 and Cs3Mg1-xZnxCl5 systems. For low concentrations of Zn, light yields of all three compounds are enhanced (by up to ∼60 %) compared to the pure crystals, achieving what we believe to be the brightest known CVL, CsMgCl3:Zn 5 % (3400 ± 170 ph/MeV light yield). More importantly, Zn doping does not affect the ultrafast timing properties, with each composition maintaining a single-component decay time around 1–3 ns. A sub-100 ps coincidence time resolution (CTR) is also achieved with CsMgCl3:Zn 5 %. The results of this work reveal a new avenue towards obtaining brighter CVL materials, which could open up possibilities for more advanced ultrafast scintillators to be discovered moving forward.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Materials: X
Optical Materials: X Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
73
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信