德劳内归一化的扩展,适用于任意幂的径向距离

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Ernesto Lanchares, Jesús F. Palacián
{"title":"德劳内归一化的扩展,适用于任意幂的径向距离","authors":"Ernesto Lanchares,&nbsp;Jesús F. Palacián","doi":"10.1016/j.cnsns.2024.108322","DOIUrl":null,"url":null,"abstract":"<div><p>In the framework of perturbed Keplerian systems we deal with the Delaunay normalisation of a wide class of perturbations such that the radial distance is raised to an arbitrary real number <span><math><mi>γ</mi></math></span>. The averaged function is expressed in terms of the Gauss hypergeometric function <span><math><mrow><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> whereas the associated generating function is the so called Appell hypergeometric function <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. The Gauss hypergeometric function related to the average depends on the eccentricity, <span><math><mi>e</mi></math></span>, whereas the Appell function depends additionally on the eccentric anomaly, <span><math><mi>E</mi></math></span>, and both special functions are properly defined and evaluated for all <span><math><mrow><mi>e</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>E</mi><mo>∈</mo><mrow><mo>[</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow></mrow></math></span>. We analyse when the functions we determine can be extended to <span><math><mrow><mi>e</mi><mo>=</mo><mn>1</mn></mrow></math></span>. When the exponent of the radial distance is an integer, the usual values of the averaged and generating functions are recovered.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005070/pdfft?md5=34d290936a857cb2d81ff20a458a095e&pid=1-s2.0-S1007570424005070-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Extension of Delaunay normalisation for arbitrary powers of the radial distance\",\"authors\":\"Ernesto Lanchares,&nbsp;Jesús F. Palacián\",\"doi\":\"10.1016/j.cnsns.2024.108322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the framework of perturbed Keplerian systems we deal with the Delaunay normalisation of a wide class of perturbations such that the radial distance is raised to an arbitrary real number <span><math><mi>γ</mi></math></span>. The averaged function is expressed in terms of the Gauss hypergeometric function <span><math><mrow><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> whereas the associated generating function is the so called Appell hypergeometric function <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. The Gauss hypergeometric function related to the average depends on the eccentricity, <span><math><mi>e</mi></math></span>, whereas the Appell function depends additionally on the eccentric anomaly, <span><math><mi>E</mi></math></span>, and both special functions are properly defined and evaluated for all <span><math><mrow><mi>e</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>E</mi><mo>∈</mo><mrow><mo>[</mo><mo>−</mo><mi>π</mi><mo>,</mo><mi>π</mi><mo>]</mo></mrow></mrow></math></span>. We analyse when the functions we determine can be extended to <span><math><mrow><mi>e</mi><mo>=</mo><mn>1</mn></mrow></math></span>. When the exponent of the radial distance is an integer, the usual values of the averaged and generating functions are recovered.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005070/pdfft?md5=34d290936a857cb2d81ff20a458a095e&pid=1-s2.0-S1007570424005070-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005070\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005070","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在开普勒扰动系统的框架内,我们处理了多种扰动的德劳内归一化,使径向距离提升到任意实数γ。平均函数用高斯超几何函数 2F1 表示,而相关的生成函数是所谓的阿贝尔超几何函数 F1。与平均值相关的高斯超几何函数取决于偏心率 e,而阿贝尔函数则另外取决于偏心反常值 E,这两个特殊函数对所有 e∈[0,1]和 E∈[-π,π]都有正确的定义和求值。我们将分析我们确定的函数何时可以扩展到 e=1。当径向距离的指数为整数时,平均函数和生成函数的通常值就会恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of Delaunay normalisation for arbitrary powers of the radial distance

In the framework of perturbed Keplerian systems we deal with the Delaunay normalisation of a wide class of perturbations such that the radial distance is raised to an arbitrary real number γ. The averaged function is expressed in terms of the Gauss hypergeometric function 2F1 whereas the associated generating function is the so called Appell hypergeometric function F1. The Gauss hypergeometric function related to the average depends on the eccentricity, e, whereas the Appell function depends additionally on the eccentric anomaly, E, and both special functions are properly defined and evaluated for all e[0,1) and E[π,π]. We analyse when the functions we determine can be extended to e=1. When the exponent of the radial distance is an integer, the usual values of the averaged and generating functions are recovered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信