Nathan G. Hendricks, Santosh D. Bhosale, Angel J. Keoseyan, Josselin Ortiz, Aleksandr Stotland, Saeed Seyedmohammad, Chi D. L. Nguyen, Jonathan T. Bui, Annie Moradian*, Susan M. Mockus and Jennifer E. Van Eyk,
{"title":"使用 Orbitrap Astral 进行高通量蛋白质组学研究的拐点:生物流体、细胞和组织分析","authors":"Nathan G. Hendricks, Santosh D. Bhosale, Angel J. Keoseyan, Josselin Ortiz, Aleksandr Stotland, Saeed Seyedmohammad, Chi D. L. Nguyen, Jonathan T. Bui, Annie Moradian*, Susan M. Mockus and Jennifer E. Van Eyk, ","doi":"10.1021/acs.jproteome.4c0038410.1021/acs.jproteome.4c00384","DOIUrl":null,"url":null,"abstract":"<p >This Technical Note presents a comprehensive proteomics workflow for the new combination of Orbitrap and Astral mass analyzers across biofluids, cells, and tissues. Central to our workflow is the integration of Adaptive Focused Acoustics (AFA) technology for cells and tissue lysis to ensure robust and reproducible sample preparation in a high-throughput manner. Furthermore, we automated the detergent-compatible single-pot, solid-phase-enhanced sample Preparation (SP3) method for protein digestion. The synergy of these advanced methodologies facilitates a robust and high-throughput approach for cell and tissue analysis, an important consideration in translational research. This work disseminates our platform workflow, analyzes the effectiveness, demonstrates the reproducibility of the results, and highlights the potential of these technologies in biomarker discovery and disease pathology. For cells and tissues (heart, liver, lung, and intestine) proteomics analysis by data-independent acquisition mode, identifications exceeding 10,000 proteins can be achieved with a 24 min active gradient. In 200 ng injections of HeLa digest across multiple gradients, an average of more than 80% of proteins have a CV less than 20%, and a 45 min run covers ∼90% of the expressed proteome. This complete workflow allows for large swaths of the proteome to be identified and is compatible with diverse sample types.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"23 9","pages":"4163–4169 4163–4169"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.4c00384","citationCount":"0","resultStr":"{\"title\":\"An Inflection Point in High-Throughput Proteomics with Orbitrap Astral: Analysis of Biofluids, Cells, and Tissues\",\"authors\":\"Nathan G. Hendricks, Santosh D. Bhosale, Angel J. Keoseyan, Josselin Ortiz, Aleksandr Stotland, Saeed Seyedmohammad, Chi D. L. Nguyen, Jonathan T. Bui, Annie Moradian*, Susan M. Mockus and Jennifer E. Van Eyk, \",\"doi\":\"10.1021/acs.jproteome.4c0038410.1021/acs.jproteome.4c00384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This Technical Note presents a comprehensive proteomics workflow for the new combination of Orbitrap and Astral mass analyzers across biofluids, cells, and tissues. Central to our workflow is the integration of Adaptive Focused Acoustics (AFA) technology for cells and tissue lysis to ensure robust and reproducible sample preparation in a high-throughput manner. Furthermore, we automated the detergent-compatible single-pot, solid-phase-enhanced sample Preparation (SP3) method for protein digestion. The synergy of these advanced methodologies facilitates a robust and high-throughput approach for cell and tissue analysis, an important consideration in translational research. This work disseminates our platform workflow, analyzes the effectiveness, demonstrates the reproducibility of the results, and highlights the potential of these technologies in biomarker discovery and disease pathology. For cells and tissues (heart, liver, lung, and intestine) proteomics analysis by data-independent acquisition mode, identifications exceeding 10,000 proteins can be achieved with a 24 min active gradient. In 200 ng injections of HeLa digest across multiple gradients, an average of more than 80% of proteins have a CV less than 20%, and a 45 min run covers ∼90% of the expressed proteome. This complete workflow allows for large swaths of the proteome to be identified and is compatible with diverse sample types.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\"23 9\",\"pages\":\"4163–4169 4163–4169\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.4c00384\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00384\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00384","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An Inflection Point in High-Throughput Proteomics with Orbitrap Astral: Analysis of Biofluids, Cells, and Tissues
This Technical Note presents a comprehensive proteomics workflow for the new combination of Orbitrap and Astral mass analyzers across biofluids, cells, and tissues. Central to our workflow is the integration of Adaptive Focused Acoustics (AFA) technology for cells and tissue lysis to ensure robust and reproducible sample preparation in a high-throughput manner. Furthermore, we automated the detergent-compatible single-pot, solid-phase-enhanced sample Preparation (SP3) method for protein digestion. The synergy of these advanced methodologies facilitates a robust and high-throughput approach for cell and tissue analysis, an important consideration in translational research. This work disseminates our platform workflow, analyzes the effectiveness, demonstrates the reproducibility of the results, and highlights the potential of these technologies in biomarker discovery and disease pathology. For cells and tissues (heart, liver, lung, and intestine) proteomics analysis by data-independent acquisition mode, identifications exceeding 10,000 proteins can be achieved with a 24 min active gradient. In 200 ng injections of HeLa digest across multiple gradients, an average of more than 80% of proteins have a CV less than 20%, and a 45 min run covers ∼90% of the expressed proteome. This complete workflow allows for large swaths of the proteome to be identified and is compatible with diverse sample types.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".