深度血浆蛋白质组学与数据独立采集:利用 COVID-19 队列优化临床研究方案

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Bradley Ward, Sébastien Pyr dit Ruys, Jean-Luc Balligand, Leïla Belkhir, Patrice D. Cani, Jean-François Collet, Julien De Greef, Joseph P. Dewulf, Laurent Gatto, Vincent Haufroid, Sébastien Jodogne, Benoît Kabamba, Maxime Lingurski, Jean Cyr Yombi, Didier Vertommen* and Laure Elens*, 
{"title":"深度血浆蛋白质组学与数据独立采集:利用 COVID-19 队列优化临床研究方案","authors":"Bradley Ward,&nbsp;Sébastien Pyr dit Ruys,&nbsp;Jean-Luc Balligand,&nbsp;Leïla Belkhir,&nbsp;Patrice D. Cani,&nbsp;Jean-François Collet,&nbsp;Julien De Greef,&nbsp;Joseph P. Dewulf,&nbsp;Laurent Gatto,&nbsp;Vincent Haufroid,&nbsp;Sébastien Jodogne,&nbsp;Benoît Kabamba,&nbsp;Maxime Lingurski,&nbsp;Jean Cyr Yombi,&nbsp;Didier Vertommen* and Laure Elens*,&nbsp;","doi":"10.1021/acs.jproteome.4c0010410.1021/acs.jproteome.4c00104","DOIUrl":null,"url":null,"abstract":"<p >Plasma proteomics is a precious tool in human disease research but requires extensive sample preparation in order to perform in-depth analysis and biomarker discovery using traditional data-dependent acquisition (DDA). Here, we highlight the efficacy of combining moderate plasma prefractionation and data-independent acquisition (DIA) to significantly improve proteome coverage and depth while remaining cost-efficient. Using human plasma collected from a 20-patient COVID-19 cohort, our method utilizes commonly available solutions for depletion, sample preparation, and fractionation, followed by 3 liquid chromatography-mass spectrometry/MS (LC-MS/MS) injections for a 360 min total DIA run time. We detect 1321 proteins on average per patient and 2031 unique proteins across the cohort. Differential analysis further demonstrates the applicability of this method for plasma proteomic research and clinical biomarker identification, identifying hundreds of differentially abundant proteins at biological concentrations as low as 47 ng/L in human plasma. Data are available via ProteomeXchange with the identifier PXD047901. In summary, this study introduces a streamlined, cost-effective approach to deep plasma proteome analysis, expanding its utility beyond classical research environments and enabling larger-scale multiomics investigations in clinical settings. Our comparative analysis revealed that fractionation, whether the samples were pooled or separate postfractionation, significantly improved the number of proteins quantified. This underscores the value of fractionation in enhancing the depth of plasma proteome analysis, thereby offering a more comprehensive landscape for biomarker discovery in diseases such as COVID-19.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"23 9","pages":"3806–3822 3806–3822"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.4c00104","citationCount":"0","resultStr":"{\"title\":\"Deep Plasma Proteomics with Data-Independent Acquisition: Clinical Study Protocol Optimization with a COVID-19 Cohort\",\"authors\":\"Bradley Ward,&nbsp;Sébastien Pyr dit Ruys,&nbsp;Jean-Luc Balligand,&nbsp;Leïla Belkhir,&nbsp;Patrice D. Cani,&nbsp;Jean-François Collet,&nbsp;Julien De Greef,&nbsp;Joseph P. Dewulf,&nbsp;Laurent Gatto,&nbsp;Vincent Haufroid,&nbsp;Sébastien Jodogne,&nbsp;Benoît Kabamba,&nbsp;Maxime Lingurski,&nbsp;Jean Cyr Yombi,&nbsp;Didier Vertommen* and Laure Elens*,&nbsp;\",\"doi\":\"10.1021/acs.jproteome.4c0010410.1021/acs.jproteome.4c00104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Plasma proteomics is a precious tool in human disease research but requires extensive sample preparation in order to perform in-depth analysis and biomarker discovery using traditional data-dependent acquisition (DDA). Here, we highlight the efficacy of combining moderate plasma prefractionation and data-independent acquisition (DIA) to significantly improve proteome coverage and depth while remaining cost-efficient. Using human plasma collected from a 20-patient COVID-19 cohort, our method utilizes commonly available solutions for depletion, sample preparation, and fractionation, followed by 3 liquid chromatography-mass spectrometry/MS (LC-MS/MS) injections for a 360 min total DIA run time. We detect 1321 proteins on average per patient and 2031 unique proteins across the cohort. Differential analysis further demonstrates the applicability of this method for plasma proteomic research and clinical biomarker identification, identifying hundreds of differentially abundant proteins at biological concentrations as low as 47 ng/L in human plasma. Data are available via ProteomeXchange with the identifier PXD047901. In summary, this study introduces a streamlined, cost-effective approach to deep plasma proteome analysis, expanding its utility beyond classical research environments and enabling larger-scale multiomics investigations in clinical settings. Our comparative analysis revealed that fractionation, whether the samples were pooled or separate postfractionation, significantly improved the number of proteins quantified. This underscores the value of fractionation in enhancing the depth of plasma proteome analysis, thereby offering a more comprehensive landscape for biomarker discovery in diseases such as COVID-19.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\"23 9\",\"pages\":\"3806–3822 3806–3822\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.4c00104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00104\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00104","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

血浆蛋白质组学是人类疾病研究的重要工具,但使用传统的数据依赖性采集(DDA)技术进行深入分析和发现生物标记物需要大量的样品制备。在这里,我们强调了将适度的血浆预分馏与数据无关采集(DIA)相结合的功效,以显著提高蛋白质组的覆盖率和深度,同时保持成本效益。我们的方法使用从 20 名 COVID-19 患者队列中收集的人血浆,利用常见的溶液进行去污、样品制备和分馏,然后进行 3 次液相色谱-质谱/质谱(LC-MS/MS)进样,DIA 总运行时间为 360 分钟。我们平均为每位患者检测到 1321 种蛋白质,在整个群体中检测到 2031 种独特的蛋白质。差异分析进一步证明了这种方法适用于血浆蛋白质组学研究和临床生物标记物鉴定,在生物浓度低至 47 纳克/升的人体血浆中鉴定出了数百种差异丰富的蛋白质。数据可通过 ProteomeXchange 获取,标识符为 PXD047901。总之,这项研究为深层血浆蛋白质组分析引入了一种简化、经济高效的方法,将其应用范围扩展到传统研究环境之外,使临床环境中更大规模的多组学研究成为可能。我们的比较分析表明,无论是将样本集中还是在分馏后分别进行分馏,都能显著提高定量蛋白质的数量。这凸显了分馏在提高血浆蛋白质组分析深度方面的价值,从而为COVID-19等疾病的生物标记物发现提供了更全面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Plasma Proteomics with Data-Independent Acquisition: Clinical Study Protocol Optimization with a COVID-19 Cohort

Deep Plasma Proteomics with Data-Independent Acquisition: Clinical Study Protocol Optimization with a COVID-19 Cohort

Plasma proteomics is a precious tool in human disease research but requires extensive sample preparation in order to perform in-depth analysis and biomarker discovery using traditional data-dependent acquisition (DDA). Here, we highlight the efficacy of combining moderate plasma prefractionation and data-independent acquisition (DIA) to significantly improve proteome coverage and depth while remaining cost-efficient. Using human plasma collected from a 20-patient COVID-19 cohort, our method utilizes commonly available solutions for depletion, sample preparation, and fractionation, followed by 3 liquid chromatography-mass spectrometry/MS (LC-MS/MS) injections for a 360 min total DIA run time. We detect 1321 proteins on average per patient and 2031 unique proteins across the cohort. Differential analysis further demonstrates the applicability of this method for plasma proteomic research and clinical biomarker identification, identifying hundreds of differentially abundant proteins at biological concentrations as low as 47 ng/L in human plasma. Data are available via ProteomeXchange with the identifier PXD047901. In summary, this study introduces a streamlined, cost-effective approach to deep plasma proteome analysis, expanding its utility beyond classical research environments and enabling larger-scale multiomics investigations in clinical settings. Our comparative analysis revealed that fractionation, whether the samples were pooled or separate postfractionation, significantly improved the number of proteins quantified. This underscores the value of fractionation in enhancing the depth of plasma proteome analysis, thereby offering a more comprehensive landscape for biomarker discovery in diseases such as COVID-19.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信