1800 兆赫射频场暴露对分化的 THP-1 细胞中细胞因子和信号转导蛋白表达的影响。

Pascale V Bellier, Gregory W McGarr, Sandy Smiley, James P McNamee
{"title":"1800 兆赫射频场暴露对分化的 THP-1 细胞中细胞因子和信号转导蛋白表达的影响。","authors":"Pascale V Bellier, Gregory W McGarr, Sandy Smiley, James P McNamee","doi":"10.1080/09553002.2024.2398090","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the effects of 1800 MHz continuous wave (CW) and global system for mobile communications (GSM) modulated radiofrequency electromagnetic field (RFEMF) exposures on signal transduction (ST) protein and cytokine expression in differentiated human-derived monocytic THP-1 cells.</p><p><strong>Materials and methods: </strong>THP-1 cells were differentiated into adherent macrophage-like cells using phorbol 12-myristate 13-acetate (PMA). Following differentiation, cells were exposed to 1800 MHz CW or GSM modulated RFEMF for 0.5, 4, or 24 h at a specific absorption rate (SAR) of 0 (sham) or 2.0 W/kg. Concurrent positive controls (lipopolysaccharide for cytokines; anisomycin for ST proteins) and negative controls were included in each experiment. The expression levels of cytokines (GM-CSF, IFN-γ, IL-1β, IL-6, IL-10, TNF-α) from culture media and phosphorylated and total ST proteins (CREB, JNK, NF-κB, p38, ERK1/2, Akt, p70S6k, STAT3, STAT5) from cell lysates were assessed using Milliplex magnetic bead array panels.</p><p><strong>Results: </strong>No consistent effect of RFEMF exposure was observed in differentiated THP-1 cells. A statistically significant effect of overall exposure condition was observed for IL-6 with GSM modulation (P = 0.042), but no difference between RFEMF and sham for any exposure condition remained following adjustment for multiple comparisons (P ≥ 0.128). No statistically significant effect of exposure condition was detected for any other cytokine evaluated with either of the RFEMF modulations (P ≥ 0.078). There were no statistically significant changes in expression levels for any of the ST proteins under any studied exposure condition (P ≥ 0.320).</p><p><strong>Conclusions: </strong>In this study, no evidence of changes were observed in differentiated human derived THP-1 cells following exposure of up to 24 h to 1800 MHz RFEMF at SARs of 0 and 2.0 W/kg on the expression of ST proteins or cytokines.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1594-1600"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of 1800 MHz radiofrequency field exposure on cytokine and signal transduction protein expression in differentiated THP-1 cells.\",\"authors\":\"Pascale V Bellier, Gregory W McGarr, Sandy Smiley, James P McNamee\",\"doi\":\"10.1080/09553002.2024.2398090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the effects of 1800 MHz continuous wave (CW) and global system for mobile communications (GSM) modulated radiofrequency electromagnetic field (RFEMF) exposures on signal transduction (ST) protein and cytokine expression in differentiated human-derived monocytic THP-1 cells.</p><p><strong>Materials and methods: </strong>THP-1 cells were differentiated into adherent macrophage-like cells using phorbol 12-myristate 13-acetate (PMA). Following differentiation, cells were exposed to 1800 MHz CW or GSM modulated RFEMF for 0.5, 4, or 24 h at a specific absorption rate (SAR) of 0 (sham) or 2.0 W/kg. Concurrent positive controls (lipopolysaccharide for cytokines; anisomycin for ST proteins) and negative controls were included in each experiment. The expression levels of cytokines (GM-CSF, IFN-γ, IL-1β, IL-6, IL-10, TNF-α) from culture media and phosphorylated and total ST proteins (CREB, JNK, NF-κB, p38, ERK1/2, Akt, p70S6k, STAT3, STAT5) from cell lysates were assessed using Milliplex magnetic bead array panels.</p><p><strong>Results: </strong>No consistent effect of RFEMF exposure was observed in differentiated THP-1 cells. A statistically significant effect of overall exposure condition was observed for IL-6 with GSM modulation (P = 0.042), but no difference between RFEMF and sham for any exposure condition remained following adjustment for multiple comparisons (P ≥ 0.128). No statistically significant effect of exposure condition was detected for any other cytokine evaluated with either of the RFEMF modulations (P ≥ 0.078). There were no statistically significant changes in expression levels for any of the ST proteins under any studied exposure condition (P ≥ 0.320).</p><p><strong>Conclusions: </strong>In this study, no evidence of changes were observed in differentiated human derived THP-1 cells following exposure of up to 24 h to 1800 MHz RFEMF at SARs of 0 and 2.0 W/kg on the expression of ST proteins or cytokines.</p>\",\"PeriodicalId\":94057,\"journal\":{\"name\":\"International journal of radiation biology\",\"volume\":\" \",\"pages\":\"1594-1600\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of radiation biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09553002.2024.2398090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2024.2398090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:评估 1800 MHz 连续波(CW)和全球移动通信系统(GSM)调制射频电磁场(RFEMF)暴露对分化的人源单核细胞 THP-1 细胞中信号转导(ST)蛋白和细胞因子表达的影响:使用 12-肉豆蔻酸 13-乙酸磷脂(PMA)将 THP-1 细胞分化为粘附的巨噬细胞样细胞。分化后,将细胞暴露于 1800 MHz CW 或 GSM 调制射频电磁场 0.5、4 或 24 小时,比吸收率(SAR)为 0(假)或 2.0 W/kg。每个实验都同时包括阳性对照组(细胞因子为脂多糖;ST 蛋白为异霉素)和阴性对照组。使用 Milliplex 磁珠阵列板评估了培养基中细胞因子(GM-CSF、IFN-γ、IL-1β、IL-6、IL-10、TNF-α)和细胞裂解液中磷酸化和总 ST 蛋白(CREB、JNK、NF-κB、p38、ERK1/2、Akt、p70S6k、STAT3、STAT5)的表达水平:结果:在分化的 THP-1 细胞中未观察到 RFEMF 暴露的一致影响。在 GSM 调节下,IL-6 的总体暴露条件具有统计学意义的影响(P = 0.042),但经多重比较调整后,任何暴露条件下 RFEMF 与假暴露之间均无差异(P ≥ 0.128)。在任何一种 RFEMF 调节条件下,对任何其他细胞因子的评估均未发现暴露条件有统计学意义的影响(P ≥ 0.078)。在任何研究的暴露条件下,ST 蛋白的表达水平均无统计学意义的变化(P ≥ 0.320):在这项研究中,在 SAR 值为 0 和 2.0 W/kg 的 1800 MHz RFEMF 下暴露长达 24 小时后,在分化的人类 THP-1 细胞中没有观察到 ST 蛋白或细胞因子的表达发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of 1800 MHz radiofrequency field exposure on cytokine and signal transduction protein expression in differentiated THP-1 cells.

Purpose: To evaluate the effects of 1800 MHz continuous wave (CW) and global system for mobile communications (GSM) modulated radiofrequency electromagnetic field (RFEMF) exposures on signal transduction (ST) protein and cytokine expression in differentiated human-derived monocytic THP-1 cells.

Materials and methods: THP-1 cells were differentiated into adherent macrophage-like cells using phorbol 12-myristate 13-acetate (PMA). Following differentiation, cells were exposed to 1800 MHz CW or GSM modulated RFEMF for 0.5, 4, or 24 h at a specific absorption rate (SAR) of 0 (sham) or 2.0 W/kg. Concurrent positive controls (lipopolysaccharide for cytokines; anisomycin for ST proteins) and negative controls were included in each experiment. The expression levels of cytokines (GM-CSF, IFN-γ, IL-1β, IL-6, IL-10, TNF-α) from culture media and phosphorylated and total ST proteins (CREB, JNK, NF-κB, p38, ERK1/2, Akt, p70S6k, STAT3, STAT5) from cell lysates were assessed using Milliplex magnetic bead array panels.

Results: No consistent effect of RFEMF exposure was observed in differentiated THP-1 cells. A statistically significant effect of overall exposure condition was observed for IL-6 with GSM modulation (P = 0.042), but no difference between RFEMF and sham for any exposure condition remained following adjustment for multiple comparisons (P ≥ 0.128). No statistically significant effect of exposure condition was detected for any other cytokine evaluated with either of the RFEMF modulations (P ≥ 0.078). There were no statistically significant changes in expression levels for any of the ST proteins under any studied exposure condition (P ≥ 0.320).

Conclusions: In this study, no evidence of changes were observed in differentiated human derived THP-1 cells following exposure of up to 24 h to 1800 MHz RFEMF at SARs of 0 and 2.0 W/kg on the expression of ST proteins or cytokines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信