在两种盐度条件下,溶解有机碳和模型化合物(溶解有机碳类似物)对太平洋沙蟾(Citharichthys sordidus)的扩散水通量、耗氧量、含氮废物排泄率和鳃跨上皮层电位的影响。

IF 1.7 3区 生物学 Q4 PHYSIOLOGY
Carolyn Morris, Camila Martins, Samantha Zulian, D Scott Smith, Colin J Brauner, Chris M Wood
{"title":"在两种盐度条件下,溶解有机碳和模型化合物(溶解有机碳类似物)对太平洋沙蟾(Citharichthys sordidus)的扩散水通量、耗氧量、含氮废物排泄率和鳃跨上皮层电位的影响。","authors":"Carolyn Morris, Camila Martins, Samantha Zulian, D Scott Smith, Colin J Brauner, Chris M Wood","doi":"10.1007/s00360-024-01580-2","DOIUrl":null,"url":null,"abstract":"<p><p>Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.5 ppt. Optical characterization of the two natural DOC sources indicate salinity-dependent differences in their physicochemistry. LO and LM DOCs, as well as three model compounds [tannic acid (TA), sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA)] representing key chemical moieties of DOC, were used to evaluate physiological effects on sanddabs. In the absence of added DOC, an acute decrease in salinity resulted in an increase in diffusive water flux (a proxy for transcellular water permeability), ammonia excretion and a change in TEP from positive (inside) to negative (inside). The effects of DOC (10 mg C L<sup>-1</sup>) were salinity and source-dependent, with generally more pronounced effects at 30 than 7.5 ppt, and greater potency of LM relative to LO. Both LM DOC and SDS increased diffusive water flux at 30 ppt but only SDS had an effect at 7.5 ppt. TA decreased ammonia excretion at 7.5 ppt. LO DOC decreased urea-N excretion at both salinities whereas the stimulatory effect of BSA occurred only at 30 ppt. Likewise, the effects of LM DOC and BSA to reduce TEP were present at 30 ppt but not 7.5 ppt. None of the treatments affected oxygen consumption rates. Our results demonstrate that DOCs and salinity interact to alter key physiological processes in marine flatfish, reflecting changes in both gill function and the physicochemistry of DOCs between 30 and 7.5 ppt.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"805-825"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of dissolved organic carbon and model compounds (DOC analogues) on diffusive water flux, oxygen consumption, nitrogenous waste excretion rates and gill transepithelial potential in Pacific sanddab (Citharichthys sordidus) at two salinities.\",\"authors\":\"Carolyn Morris, Camila Martins, Samantha Zulian, D Scott Smith, Colin J Brauner, Chris M Wood\",\"doi\":\"10.1007/s00360-024-01580-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.5 ppt. Optical characterization of the two natural DOC sources indicate salinity-dependent differences in their physicochemistry. LO and LM DOCs, as well as three model compounds [tannic acid (TA), sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA)] representing key chemical moieties of DOC, were used to evaluate physiological effects on sanddabs. In the absence of added DOC, an acute decrease in salinity resulted in an increase in diffusive water flux (a proxy for transcellular water permeability), ammonia excretion and a change in TEP from positive (inside) to negative (inside). The effects of DOC (10 mg C L<sup>-1</sup>) were salinity and source-dependent, with generally more pronounced effects at 30 than 7.5 ppt, and greater potency of LM relative to LO. Both LM DOC and SDS increased diffusive water flux at 30 ppt but only SDS had an effect at 7.5 ppt. TA decreased ammonia excretion at 7.5 ppt. LO DOC decreased urea-N excretion at both salinities whereas the stimulatory effect of BSA occurred only at 30 ppt. Likewise, the effects of LM DOC and BSA to reduce TEP were present at 30 ppt but not 7.5 ppt. None of the treatments affected oxygen consumption rates. Our results demonstrate that DOCs and salinity interact to alter key physiological processes in marine flatfish, reflecting changes in both gill function and the physicochemistry of DOCs between 30 and 7.5 ppt.</p>\",\"PeriodicalId\":56033,\"journal\":{\"name\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"volume\":\" \",\"pages\":\"805-825\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00360-024-01580-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-024-01580-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

许多比目鱼物种部分属于极性鱼类,如太平洋沙丁鱼,它们在从海水到近淡水的高度动态河口产卵和觅食。随着咸水入侵淡水栖息地的现象迅速增加,在这些河口,比目鱼很可能会暴露在不同盐度下越来越高的淡水源溶解有机碳(DOC)中。由于盐度波动往往与溶解有机碳浓度的变化同时发生,因此研究了两种天然淡水溶解有机碳(卢瑟沼泽(LM,同源)和安大略湖(LO,自源),盐度分别为 30 和 7.5 ppt)。这两种天然 DOC 来源的光学特征表明,它们的物理化学差异与盐度有关。LO 和 LM DOC 以及代表 DOC 关键化学分子的三种模型化合物 [单宁酸 (TA)、十二烷基硫酸钠 (SDS) 和牛血清白蛋白 (BSA)],被用来评估对沙蚕的生理影响。在不添加 DOC 的情况下,盐度的急剧下降会导致扩散水通量(代表跨细胞水渗透性)、氨排泄和 TEP 从正值(内部)变为负值(内部)。DOC(10 毫克 C L-1)的影响取决于盐度和来源,一般来说,30 ppt 的影响比 7.5 ppt 的影响更明显,LM 的影响比 LO 的影响更大。LM DOC 和 SDS 在 30 ppt 时都能增加扩散水通量,但只有 SDS 在 7.5 ppt 时有影响。在 7.5 ppt 时,TA 可减少氨的排泄。在两种盐度下,LO DOC 都能减少尿素-N 的排泄,而 BSA 的刺激作用只出现在 30 ppt 时。同样,LM DOC 和 BSA 在 30 ppt 时具有降低 TEP 的作用,而在 7.5 ppt 时则没有。所有处理都不会影响耗氧率。我们的研究结果表明,溶解氧和盐度相互作用,改变了海洋比目鱼的关键生理过程,反映了鳃功能和溶解氧理化性质在 30 至 7.5 ppt 之间的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The effects of dissolved organic carbon and model compounds (DOC analogues) on diffusive water flux, oxygen consumption, nitrogenous waste excretion rates and gill transepithelial potential in Pacific sanddab (Citharichthys sordidus) at two salinities.

The effects of dissolved organic carbon and model compounds (DOC analogues) on diffusive water flux, oxygen consumption, nitrogenous waste excretion rates and gill transepithelial potential in Pacific sanddab (Citharichthys sordidus) at two salinities.

Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.5 ppt. Optical characterization of the two natural DOC sources indicate salinity-dependent differences in their physicochemistry. LO and LM DOCs, as well as three model compounds [tannic acid (TA), sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA)] representing key chemical moieties of DOC, were used to evaluate physiological effects on sanddabs. In the absence of added DOC, an acute decrease in salinity resulted in an increase in diffusive water flux (a proxy for transcellular water permeability), ammonia excretion and a change in TEP from positive (inside) to negative (inside). The effects of DOC (10 mg C L-1) were salinity and source-dependent, with generally more pronounced effects at 30 than 7.5 ppt, and greater potency of LM relative to LO. Both LM DOC and SDS increased diffusive water flux at 30 ppt but only SDS had an effect at 7.5 ppt. TA decreased ammonia excretion at 7.5 ppt. LO DOC decreased urea-N excretion at both salinities whereas the stimulatory effect of BSA occurred only at 30 ppt. Likewise, the effects of LM DOC and BSA to reduce TEP were present at 30 ppt but not 7.5 ppt. None of the treatments affected oxygen consumption rates. Our results demonstrate that DOCs and salinity interact to alter key physiological processes in marine flatfish, reflecting changes in both gill function and the physicochemistry of DOCs between 30 and 7.5 ppt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信