{"title":"自然界对 PHA 循环经济的提示:假单胞菌 GK13 的碳合成与共享。","authors":"","doi":"10.1016/j.nbt.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Polyhydroxyalkanoates (PHAs) are a well-known group of biodegradable and biocompatible bioplastics that are synthesised and stored by microorganisms as carbon and energy reservoirs. Extracellular PHA depolymerases (ePhaZs), secreted by a limited range of microorganisms, are the main hydrolytic enzymes responsible for their environmental degradation. <em>Pseudomonas</em> sp. GK13, initially identified as <em>P. fluorescens</em> GK13, produces PHA and a prototypic ePhaZ that specifically degrades mcl-PHA. In this study, a comprehensive characterization of strain GK13 was performed. The whole genomic sequence of GK13 was consolidated into one complete chromosome, leading to its reclassification as <em>P. solani</em> GK13. We conducted a detailed <em>in silico</em> examination of the bacteria genomic sequence, specifically targeting PHA metabolic functions. From the different growth conditions explored, PHA accumulation occurred only under carbon/nitrogen (C/N) imbalance, whereas ePhaZ production was induced even at balanced C/N ratios in mineral media. We extend our study to other bacteria belonging to the <em>Pseudomonas</em> genus revealing that the ePhaZ production capacity is closely associated with mcl-PHA synthesis capacity, as also suggested by metagenomic samples. This finding suggests that these types of microorganisms could contribute to the carbon economy of the microbial community, by storing PHA in carbon-rich times, and sharing it with the rest of the population during times of carbon scarcity through PHA hydrolysis. The conclusion pointed that carbon cycle metabolism performed by <em>P. solani</em> GK13 may contribute to the environmental circular economy at a microscopic scale.</p></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1871678424005430/pdfft?md5=7567945b424b16c69eddbbe82d513f30&pid=1-s2.0-S1871678424005430-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hints from nature for a PHA circular economy: Carbon synthesis and sharing by Pseudomonas solani GK13\",\"authors\":\"\",\"doi\":\"10.1016/j.nbt.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polyhydroxyalkanoates (PHAs) are a well-known group of biodegradable and biocompatible bioplastics that are synthesised and stored by microorganisms as carbon and energy reservoirs. Extracellular PHA depolymerases (ePhaZs), secreted by a limited range of microorganisms, are the main hydrolytic enzymes responsible for their environmental degradation. <em>Pseudomonas</em> sp. GK13, initially identified as <em>P. fluorescens</em> GK13, produces PHA and a prototypic ePhaZ that specifically degrades mcl-PHA. In this study, a comprehensive characterization of strain GK13 was performed. The whole genomic sequence of GK13 was consolidated into one complete chromosome, leading to its reclassification as <em>P. solani</em> GK13. We conducted a detailed <em>in silico</em> examination of the bacteria genomic sequence, specifically targeting PHA metabolic functions. From the different growth conditions explored, PHA accumulation occurred only under carbon/nitrogen (C/N) imbalance, whereas ePhaZ production was induced even at balanced C/N ratios in mineral media. We extend our study to other bacteria belonging to the <em>Pseudomonas</em> genus revealing that the ePhaZ production capacity is closely associated with mcl-PHA synthesis capacity, as also suggested by metagenomic samples. This finding suggests that these types of microorganisms could contribute to the carbon economy of the microbial community, by storing PHA in carbon-rich times, and sharing it with the rest of the population during times of carbon scarcity through PHA hydrolysis. The conclusion pointed that carbon cycle metabolism performed by <em>P. solani</em> GK13 may contribute to the environmental circular economy at a microscopic scale.</p></div>\",\"PeriodicalId\":19190,\"journal\":{\"name\":\"New biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1871678424005430/pdfft?md5=7567945b424b16c69eddbbe82d513f30&pid=1-s2.0-S1871678424005430-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1871678424005430\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678424005430","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Hints from nature for a PHA circular economy: Carbon synthesis and sharing by Pseudomonas solani GK13
Polyhydroxyalkanoates (PHAs) are a well-known group of biodegradable and biocompatible bioplastics that are synthesised and stored by microorganisms as carbon and energy reservoirs. Extracellular PHA depolymerases (ePhaZs), secreted by a limited range of microorganisms, are the main hydrolytic enzymes responsible for their environmental degradation. Pseudomonas sp. GK13, initially identified as P. fluorescens GK13, produces PHA and a prototypic ePhaZ that specifically degrades mcl-PHA. In this study, a comprehensive characterization of strain GK13 was performed. The whole genomic sequence of GK13 was consolidated into one complete chromosome, leading to its reclassification as P. solani GK13. We conducted a detailed in silico examination of the bacteria genomic sequence, specifically targeting PHA metabolic functions. From the different growth conditions explored, PHA accumulation occurred only under carbon/nitrogen (C/N) imbalance, whereas ePhaZ production was induced even at balanced C/N ratios in mineral media. We extend our study to other bacteria belonging to the Pseudomonas genus revealing that the ePhaZ production capacity is closely associated with mcl-PHA synthesis capacity, as also suggested by metagenomic samples. This finding suggests that these types of microorganisms could contribute to the carbon economy of the microbial community, by storing PHA in carbon-rich times, and sharing it with the rest of the population during times of carbon scarcity through PHA hydrolysis. The conclusion pointed that carbon cycle metabolism performed by P. solani GK13 may contribute to the environmental circular economy at a microscopic scale.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.