控制 PASTA 激酶依赖性 ReoM 磷酸化的细胞膜因素

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Microbiology Pub Date : 2024-10-01 Epub Date: 2024-09-08 DOI:10.1111/mmi.15307
Patricia Rothe, Sabrina Wamp, Lisa Rosemeyer, Jeanine Rismondo, Joerg Doellinger, Angelika Gründling, Sven Halbedel
{"title":"控制 PASTA 激酶依赖性 ReoM 磷酸化的细胞膜因素","authors":"Patricia Rothe, Sabrina Wamp, Lisa Rosemeyer, Jeanine Rismondo, Joerg Doellinger, Angelika Gründling, Sven Halbedel","doi":"10.1111/mmi.15307","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria adapt the biosynthesis of their envelopes to specific growth conditions and prevailing stress factors. Peptidoglycan (PG) is the major component of the cell wall in Gram-positive bacteria, where PASTA kinases play a central role in PG biosynthesis regulation. Despite their importance for growth, cell division and antibiotic resistance, the mechanisms of PASTA kinase activation are not fully understood. ReoM, a recently discovered cytosolic phosphoprotein, is one of the main substrates of the PASTA kinase PrkA in the Gram-positive human pathogen Listeria monocytogenes. Depending on its phosphorylation, ReoM controls proteolytic stability of MurA, the first enzyme in the PG biosynthesis pathway. The late cell division protein GpsB has been implicated in PASTA kinase signalling. Consistently, we show that L. monocytogenes prkA and gpsB mutants phenocopied each other. Analysis of in vivo ReoM phosphorylation confirmed GpsB as an activator of PrkA leading to the description of structural features in GpsB that are important for kinase activation. We further show that ReoM phosphorylation is growth phase-dependent and that this kinetic is reliant on the protein phosphatase PrpC. ReoM phosphorylation was inhibited in mutants with defects in MurA degradation, leading to the discovery that MurA overexpression prevented ReoM phosphorylation. Overexpressed MurA must be able to bind its substrates and interact with ReoM to exert this effect, but the extracellular PASTA domains of PrkA or MurJ flippases were not required. Our results indicate that intracellular signals control ReoM phosphorylation and extend current models describing the mechanisms of PASTA kinase activation.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"514-533"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytosolic Factors Controlling PASTA Kinase-Dependent ReoM Phosphorylation.\",\"authors\":\"Patricia Rothe, Sabrina Wamp, Lisa Rosemeyer, Jeanine Rismondo, Joerg Doellinger, Angelika Gründling, Sven Halbedel\",\"doi\":\"10.1111/mmi.15307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria adapt the biosynthesis of their envelopes to specific growth conditions and prevailing stress factors. Peptidoglycan (PG) is the major component of the cell wall in Gram-positive bacteria, where PASTA kinases play a central role in PG biosynthesis regulation. Despite their importance for growth, cell division and antibiotic resistance, the mechanisms of PASTA kinase activation are not fully understood. ReoM, a recently discovered cytosolic phosphoprotein, is one of the main substrates of the PASTA kinase PrkA in the Gram-positive human pathogen Listeria monocytogenes. Depending on its phosphorylation, ReoM controls proteolytic stability of MurA, the first enzyme in the PG biosynthesis pathway. The late cell division protein GpsB has been implicated in PASTA kinase signalling. Consistently, we show that L. monocytogenes prkA and gpsB mutants phenocopied each other. Analysis of in vivo ReoM phosphorylation confirmed GpsB as an activator of PrkA leading to the description of structural features in GpsB that are important for kinase activation. We further show that ReoM phosphorylation is growth phase-dependent and that this kinetic is reliant on the protein phosphatase PrpC. ReoM phosphorylation was inhibited in mutants with defects in MurA degradation, leading to the discovery that MurA overexpression prevented ReoM phosphorylation. Overexpressed MurA must be able to bind its substrates and interact with ReoM to exert this effect, but the extracellular PASTA domains of PrkA or MurJ flippases were not required. Our results indicate that intracellular signals control ReoM phosphorylation and extend current models describing the mechanisms of PASTA kinase activation.</p>\",\"PeriodicalId\":19006,\"journal\":{\"name\":\"Molecular Microbiology\",\"volume\":\" \",\"pages\":\"514-533\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mmi.15307\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15307","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌会根据特定的生长条件和普遍存在的压力因素调整其包膜的生物合成。肽聚糖(PG)是革兰氏阳性细菌细胞壁的主要成分,其中 PASTA 激酶在 PG 生物合成调控中发挥着核心作用。尽管 PASTA 激酶对细菌的生长、细胞分裂和抗生素耐药性非常重要,但人们对其激活机制还不完全了解。ReoM 是最近发现的一种细胞磷蛋白,是人类革兰氏阳性病原体李斯特菌中 PASTA 激酶 PrkA 的主要底物之一。根据其磷酸化程度,ReoM 可控制 PG 生物合成途径中第一个酶 MurA 的蛋白水解稳定性。细胞分裂后期蛋白 GpsB 与 PASTA 激酶信号传导有关。同样,我们发现单核细胞增多性乳酸杆菌 prkA 和 gpsB 突变体相互表型。对体内 ReoM 磷酸化的分析证实 GpsB 是 PrkA 的激活剂,从而描述了 GpsB 中对激酶激活非常重要的结构特征。我们进一步发现,ReoM 磷酸化依赖于生长阶段,而这种动力学依赖于蛋白磷酸酶 PrpC。在 MurA 降解缺陷的突变体中,ReoM 磷酸化受到抑制,从而发现 MurA 过表达能阻止 ReoM 磷酸化。过表达的 MurA 必须能够结合其底物并与 ReoM 相互作用才能产生这种效果,但 PrkA 或 MurJ 翻转酶的细胞外 PASTA 结构域并不是必需的。我们的研究结果表明,细胞内信号控制着 ReoM 的磷酸化,并扩展了目前描述 PASTA 激酶激活机制的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cytosolic Factors Controlling PASTA Kinase-Dependent ReoM Phosphorylation.

Bacteria adapt the biosynthesis of their envelopes to specific growth conditions and prevailing stress factors. Peptidoglycan (PG) is the major component of the cell wall in Gram-positive bacteria, where PASTA kinases play a central role in PG biosynthesis regulation. Despite their importance for growth, cell division and antibiotic resistance, the mechanisms of PASTA kinase activation are not fully understood. ReoM, a recently discovered cytosolic phosphoprotein, is one of the main substrates of the PASTA kinase PrkA in the Gram-positive human pathogen Listeria monocytogenes. Depending on its phosphorylation, ReoM controls proteolytic stability of MurA, the first enzyme in the PG biosynthesis pathway. The late cell division protein GpsB has been implicated in PASTA kinase signalling. Consistently, we show that L. monocytogenes prkA and gpsB mutants phenocopied each other. Analysis of in vivo ReoM phosphorylation confirmed GpsB as an activator of PrkA leading to the description of structural features in GpsB that are important for kinase activation. We further show that ReoM phosphorylation is growth phase-dependent and that this kinetic is reliant on the protein phosphatase PrpC. ReoM phosphorylation was inhibited in mutants with defects in MurA degradation, leading to the discovery that MurA overexpression prevented ReoM phosphorylation. Overexpressed MurA must be able to bind its substrates and interact with ReoM to exert this effect, but the extracellular PASTA domains of PrkA or MurJ flippases were not required. Our results indicate that intracellular signals control ReoM phosphorylation and extend current models describing the mechanisms of PASTA kinase activation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信