利用深度学习对组织血红蛋白、黑色素和散射进行量化的高光谱成像。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2024-09-01 Epub Date: 2024-09-06 DOI:10.1117/1.JBO.29.9.093507
Thomas T Livecchi, Steven L Jacques, Hrebesh M Subhash, Mark C Pierce
{"title":"利用深度学习对组织血红蛋白、黑色素和散射进行量化的高光谱成像。","authors":"Thomas T Livecchi, Steven L Jacques, Hrebesh M Subhash, Mark C Pierce","doi":"10.1117/1.JBO.29.9.093507","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Hyperspectral cameras capture spectral information at each pixel in an image. Acquired spectra can be analyzed to estimate quantities of absorbing and scattering components, but the use of traditional fitting algorithms over megapixel images can be computationally intensive. Deep learning algorithms can be trained to rapidly analyze spectral data and can potentially process hyperspectral camera data in real time.</p><p><strong>Aim: </strong>A hyperspectral camera was used to capture <math><mrow><mn>1216</mn> <mo>×</mo> <mn>1936</mn> <mtext>  pixel</mtext></mrow> </math> wide-field reflectance images of <i>in vivo</i> human tissue at 205 wavelength bands from 420 to 830 nm.</p><p><strong>Approach: </strong>The optical properties of oxyhemoglobin, deoxyhemoglobin, melanin, and scattering were used with multi-layer Monte Carlo models to generate simulated diffuse reflectance spectra for 24,000 random combinations of physiologically relevant tissue components. These spectra were then used to train an artificial neural network (ANN) to predict tissue component concentrations from an input reflectance spectrum.</p><p><strong>Results: </strong>The ANN achieved low root mean square errors in a test set of 6000 independent simulated diffuse reflectance spectra while calculating concentration values more than 4000× faster than a conventional iterative least squares approach.</p><p><strong>Conclusions: </strong><i>In vivo</i> finger occlusion and gingival abrasion studies demonstrate the ability of this approach to rapidly generate high-resolution images of tissue component concentrations from a hyperspectral dataset acquired from human subjects.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 9","pages":"093507"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378079/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral imaging with deep learning for quantification of tissue hemoglobin, melanin, and scattering.\",\"authors\":\"Thomas T Livecchi, Steven L Jacques, Hrebesh M Subhash, Mark C Pierce\",\"doi\":\"10.1117/1.JBO.29.9.093507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Hyperspectral cameras capture spectral information at each pixel in an image. Acquired spectra can be analyzed to estimate quantities of absorbing and scattering components, but the use of traditional fitting algorithms over megapixel images can be computationally intensive. Deep learning algorithms can be trained to rapidly analyze spectral data and can potentially process hyperspectral camera data in real time.</p><p><strong>Aim: </strong>A hyperspectral camera was used to capture <math><mrow><mn>1216</mn> <mo>×</mo> <mn>1936</mn> <mtext>  pixel</mtext></mrow> </math> wide-field reflectance images of <i>in vivo</i> human tissue at 205 wavelength bands from 420 to 830 nm.</p><p><strong>Approach: </strong>The optical properties of oxyhemoglobin, deoxyhemoglobin, melanin, and scattering were used with multi-layer Monte Carlo models to generate simulated diffuse reflectance spectra for 24,000 random combinations of physiologically relevant tissue components. These spectra were then used to train an artificial neural network (ANN) to predict tissue component concentrations from an input reflectance spectrum.</p><p><strong>Results: </strong>The ANN achieved low root mean square errors in a test set of 6000 independent simulated diffuse reflectance spectra while calculating concentration values more than 4000× faster than a conventional iterative least squares approach.</p><p><strong>Conclusions: </strong><i>In vivo</i> finger occlusion and gingival abrasion studies demonstrate the ability of this approach to rapidly generate high-resolution images of tissue component concentrations from a hyperspectral dataset acquired from human subjects.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"29 9\",\"pages\":\"093507\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378079/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.29.9.093507\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.9.093507","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义重大:高光谱相机可捕捉图像中每个像素的光谱信息。可以对获取的光谱进行分析,以估算吸收和散射成分的数量,但在百万像素图像上使用传统拟合算法会耗费大量计算资源。可以训练深度学习算法来快速分析光谱数据,并有可能实时处理高光谱相机数据。目的:使用高光谱相机捕捉活体人体组织在 420 至 830 纳米 205 波段的 1216 × 1936 像素宽场反射率图像:方法:利用氧合血红蛋白、脱氧血红蛋白、黑色素和散射的光学特性以及多层蒙特卡洛模型,为 24,000 种生理相关组织成分的随机组合生成模拟漫反射光谱。然后用这些光谱来训练人工神经网络(ANN),以便根据输入的反射光谱预测组织成分浓度:结果:人工神经网络在 6000 个独立的模拟漫反射光谱测试集中实现了较低的均方根误差,同时计算浓度值的速度比传统的迭代最小二乘法快 4000 倍以上:体内手指咬合和牙龈磨损研究表明,这种方法能够从从人体获取的高光谱数据集中快速生成组织成分浓度的高分辨率图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral imaging with deep learning for quantification of tissue hemoglobin, melanin, and scattering.

Significance: Hyperspectral cameras capture spectral information at each pixel in an image. Acquired spectra can be analyzed to estimate quantities of absorbing and scattering components, but the use of traditional fitting algorithms over megapixel images can be computationally intensive. Deep learning algorithms can be trained to rapidly analyze spectral data and can potentially process hyperspectral camera data in real time.

Aim: A hyperspectral camera was used to capture 1216 × 1936   pixel wide-field reflectance images of in vivo human tissue at 205 wavelength bands from 420 to 830 nm.

Approach: The optical properties of oxyhemoglobin, deoxyhemoglobin, melanin, and scattering were used with multi-layer Monte Carlo models to generate simulated diffuse reflectance spectra for 24,000 random combinations of physiologically relevant tissue components. These spectra were then used to train an artificial neural network (ANN) to predict tissue component concentrations from an input reflectance spectrum.

Results: The ANN achieved low root mean square errors in a test set of 6000 independent simulated diffuse reflectance spectra while calculating concentration values more than 4000× faster than a conventional iterative least squares approach.

Conclusions: In vivo finger occlusion and gingival abrasion studies demonstrate the ability of this approach to rapidly generate high-resolution images of tissue component concentrations from a hyperspectral dataset acquired from human subjects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信