Yun Lu, Dan Zhang, Dongsheng Han, Fei Yu, Xingnong Ye, Shufa Zheng
{"title":"病例报告:利用元基因组下一代测序方法诊断巴贝西亚原虫引起的溶血性贫血和继发性多病原体肺炎","authors":"Yun Lu, Dan Zhang, Dongsheng Han, Fei Yu, Xingnong Ye, Shufa Zheng","doi":"10.2147/IDR.S472861","DOIUrl":null,"url":null,"abstract":"<p><p>Babesiosis, as a vector-borne infectious disease, remains relatively rare and is prone to being overlooked and misdiagnosed. Therefore, understanding the epidemiological characteristics and clinical manifestations of babesiosis is crucial for the prompt detection and treatment of the disease. We reported a 63-year-old male patient presenting with spontaneous fever and chills. Laboratory investigations revealed erythrocytopenia, reduced hemoglobin levels, and increased reticulocytes and total bilirubin. Bone marrow examination indicated vigorous cell proliferation, a decreased granulocyte to red cell ratio, and predominant erythroid cell proliferation, with a higher prevalence of intermediate and late-stage juvenile granulocyte and erythroid cells. Initial treatment focused on hemophagocytic syndrome triggered by Epstein-Barr virus infection yielded unsatisfactory results, leading to secondary multiple pulmonary infections. Metagenomic next-generation sequencing (mNGS) of sputum samples pointed to hemolytic anemia induced by Babesia infection, which was subsequently confirmed through peripheral blood smear analysis. The patient responded well to prompt administration of atovaquone and azithromycin, with symptoms resolving and laboratory parameters normalizing. Hemolytic anemia resulting from babesiosis should be distinguished from hemophagocytic syndrome caused by Epstein-Barr virus and other hematologic conditions. mNGS represents an efficient technique for Babesia detection.</p>","PeriodicalId":13577,"journal":{"name":"Infection and Drug Resistance","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378987/pdf/","citationCount":"0","resultStr":"{\"title\":\"Case Report: Diagnosis of Hemolytic Anemia from Babesia and Secondary Multi-Pathogen Pneumonia Using a Metagenomic Next-Generation Sequencing Approach.\",\"authors\":\"Yun Lu, Dan Zhang, Dongsheng Han, Fei Yu, Xingnong Ye, Shufa Zheng\",\"doi\":\"10.2147/IDR.S472861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Babesiosis, as a vector-borne infectious disease, remains relatively rare and is prone to being overlooked and misdiagnosed. Therefore, understanding the epidemiological characteristics and clinical manifestations of babesiosis is crucial for the prompt detection and treatment of the disease. We reported a 63-year-old male patient presenting with spontaneous fever and chills. Laboratory investigations revealed erythrocytopenia, reduced hemoglobin levels, and increased reticulocytes and total bilirubin. Bone marrow examination indicated vigorous cell proliferation, a decreased granulocyte to red cell ratio, and predominant erythroid cell proliferation, with a higher prevalence of intermediate and late-stage juvenile granulocyte and erythroid cells. Initial treatment focused on hemophagocytic syndrome triggered by Epstein-Barr virus infection yielded unsatisfactory results, leading to secondary multiple pulmonary infections. Metagenomic next-generation sequencing (mNGS) of sputum samples pointed to hemolytic anemia induced by Babesia infection, which was subsequently confirmed through peripheral blood smear analysis. The patient responded well to prompt administration of atovaquone and azithromycin, with symptoms resolving and laboratory parameters normalizing. Hemolytic anemia resulting from babesiosis should be distinguished from hemophagocytic syndrome caused by Epstein-Barr virus and other hematologic conditions. mNGS represents an efficient technique for Babesia detection.</p>\",\"PeriodicalId\":13577,\"journal\":{\"name\":\"Infection and Drug Resistance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378987/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infection and Drug Resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IDR.S472861\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IDR.S472861","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Case Report: Diagnosis of Hemolytic Anemia from Babesia and Secondary Multi-Pathogen Pneumonia Using a Metagenomic Next-Generation Sequencing Approach.
Babesiosis, as a vector-borne infectious disease, remains relatively rare and is prone to being overlooked and misdiagnosed. Therefore, understanding the epidemiological characteristics and clinical manifestations of babesiosis is crucial for the prompt detection and treatment of the disease. We reported a 63-year-old male patient presenting with spontaneous fever and chills. Laboratory investigations revealed erythrocytopenia, reduced hemoglobin levels, and increased reticulocytes and total bilirubin. Bone marrow examination indicated vigorous cell proliferation, a decreased granulocyte to red cell ratio, and predominant erythroid cell proliferation, with a higher prevalence of intermediate and late-stage juvenile granulocyte and erythroid cells. Initial treatment focused on hemophagocytic syndrome triggered by Epstein-Barr virus infection yielded unsatisfactory results, leading to secondary multiple pulmonary infections. Metagenomic next-generation sequencing (mNGS) of sputum samples pointed to hemolytic anemia induced by Babesia infection, which was subsequently confirmed through peripheral blood smear analysis. The patient responded well to prompt administration of atovaquone and azithromycin, with symptoms resolving and laboratory parameters normalizing. Hemolytic anemia resulting from babesiosis should be distinguished from hemophagocytic syndrome caused by Epstein-Barr virus and other hematologic conditions. mNGS represents an efficient technique for Babesia detection.
期刊介绍:
About Journal
Editors
Peer Reviewers
Articles
Article Publishing Charges
Aims and Scope
Call For Papers
ISSN: 1178-6973
Editor-in-Chief: Professor Suresh Antony
An international, peer-reviewed, open access journal that focuses on the optimal treatment of infection (bacterial, fungal and viral) and the development and institution of preventative strategies to minimize the development and spread of resistance.