{"title":"利用双疾病靶点映射网络药理学方法,马鞭草苷通过激活雌激素信号来缓解氧化应激,从而改善骨质疏松症。","authors":"Peitong Wu, Qingguo Lv, Shuo Wang, Xueqin Feng, Kaiyue Zhang, Chunnan Li, Yishan Li, Xiaochen Gao, Jiaming Sun","doi":"10.2174/0113862073312956240826053228","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Verbascoside, a compound classified as a phenylethanol glycoside in Dihuang, has been the subject of modern pharmacological investigations. These studies have revealed its noteworthy antioxidant, anti-inflammatory, memory-enhancing, neuroprotective, antitumor, and various other pharmacological properties. While verbascoside exhibits favorable antioxidant effects, its precise mechanism of action in ameliorating osteoporosis through the treatment of oxidative stress remains unclear.</p><p><strong>Methods: </strong>This study employed CCK8, ALP, ELISA, and ROS staining techniques to examine the osteoporotic effects of verbascoside on zebrafish and MC3T3-E1 cells. Additionally, this study aimed to investigate the molecular mechanism by which verbascoside improves osteoporosis by mitigating oxidative stress. To identify the common targets of verbascoside in relation to oxidative stress and osteoporosis, network pharmacology and molecular dynamics simulation were employed. The construction of the verbascoside - oxidative stress - osteoporosis - potential target gene network aimed to identify the core targets, while the mechanism of action was elucidated through KEGG analysis, and the accuracy was confirmed by assessing the mRNA expression of the targets.</p><p><strong>Results: </strong>In vivo experiments demonstrated that verbascoside exhibited therapeutic effects on osteoporosis and reduced ROS production in zebrafish. In vitro experiments further revealed that verbascoside enhanced the proliferation and differentiation of MC3T3-E1 cells, thereby improving the oxidative stress status of osteoblasts. Thirteen core targets and estrogen signaling pathways were identified through the application of network pharmacology. The pivotal role of the estrogen signaling pathway in facilitating the ability of verbascoside to mitigate oxidative stressinduced osteoporosis was substantiated by the modulation of target protein mRNA expression.</p><p><strong>Conclusion: </strong>The findings underscore the considerable therapeutic potential of verbascoside in ameliorating osteoporosis through the alleviation of oxidative stress, thus establishing it as a promising compound for the treatment of this condition.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using a Dual-Disease Target Mapping Network Pharmacology Approach, Verbascoside Ameliorates Osteoporosis by Activating Estrogen Signaling to Alleviate Oxidative Stress.\",\"authors\":\"Peitong Wu, Qingguo Lv, Shuo Wang, Xueqin Feng, Kaiyue Zhang, Chunnan Li, Yishan Li, Xiaochen Gao, Jiaming Sun\",\"doi\":\"10.2174/0113862073312956240826053228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Verbascoside, a compound classified as a phenylethanol glycoside in Dihuang, has been the subject of modern pharmacological investigations. These studies have revealed its noteworthy antioxidant, anti-inflammatory, memory-enhancing, neuroprotective, antitumor, and various other pharmacological properties. While verbascoside exhibits favorable antioxidant effects, its precise mechanism of action in ameliorating osteoporosis through the treatment of oxidative stress remains unclear.</p><p><strong>Methods: </strong>This study employed CCK8, ALP, ELISA, and ROS staining techniques to examine the osteoporotic effects of verbascoside on zebrafish and MC3T3-E1 cells. Additionally, this study aimed to investigate the molecular mechanism by which verbascoside improves osteoporosis by mitigating oxidative stress. To identify the common targets of verbascoside in relation to oxidative stress and osteoporosis, network pharmacology and molecular dynamics simulation were employed. The construction of the verbascoside - oxidative stress - osteoporosis - potential target gene network aimed to identify the core targets, while the mechanism of action was elucidated through KEGG analysis, and the accuracy was confirmed by assessing the mRNA expression of the targets.</p><p><strong>Results: </strong>In vivo experiments demonstrated that verbascoside exhibited therapeutic effects on osteoporosis and reduced ROS production in zebrafish. In vitro experiments further revealed that verbascoside enhanced the proliferation and differentiation of MC3T3-E1 cells, thereby improving the oxidative stress status of osteoblasts. Thirteen core targets and estrogen signaling pathways were identified through the application of network pharmacology. The pivotal role of the estrogen signaling pathway in facilitating the ability of verbascoside to mitigate oxidative stressinduced osteoporosis was substantiated by the modulation of target protein mRNA expression.</p><p><strong>Conclusion: </strong>The findings underscore the considerable therapeutic potential of verbascoside in ameliorating osteoporosis through the alleviation of oxidative stress, thus establishing it as a promising compound for the treatment of this condition.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073312956240826053228\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073312956240826053228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Using a Dual-Disease Target Mapping Network Pharmacology Approach, Verbascoside Ameliorates Osteoporosis by Activating Estrogen Signaling to Alleviate Oxidative Stress.
Background: Verbascoside, a compound classified as a phenylethanol glycoside in Dihuang, has been the subject of modern pharmacological investigations. These studies have revealed its noteworthy antioxidant, anti-inflammatory, memory-enhancing, neuroprotective, antitumor, and various other pharmacological properties. While verbascoside exhibits favorable antioxidant effects, its precise mechanism of action in ameliorating osteoporosis through the treatment of oxidative stress remains unclear.
Methods: This study employed CCK8, ALP, ELISA, and ROS staining techniques to examine the osteoporotic effects of verbascoside on zebrafish and MC3T3-E1 cells. Additionally, this study aimed to investigate the molecular mechanism by which verbascoside improves osteoporosis by mitigating oxidative stress. To identify the common targets of verbascoside in relation to oxidative stress and osteoporosis, network pharmacology and molecular dynamics simulation were employed. The construction of the verbascoside - oxidative stress - osteoporosis - potential target gene network aimed to identify the core targets, while the mechanism of action was elucidated through KEGG analysis, and the accuracy was confirmed by assessing the mRNA expression of the targets.
Results: In vivo experiments demonstrated that verbascoside exhibited therapeutic effects on osteoporosis and reduced ROS production in zebrafish. In vitro experiments further revealed that verbascoside enhanced the proliferation and differentiation of MC3T3-E1 cells, thereby improving the oxidative stress status of osteoblasts. Thirteen core targets and estrogen signaling pathways were identified through the application of network pharmacology. The pivotal role of the estrogen signaling pathway in facilitating the ability of verbascoside to mitigate oxidative stressinduced osteoporosis was substantiated by the modulation of target protein mRNA expression.
Conclusion: The findings underscore the considerable therapeutic potential of verbascoside in ameliorating osteoporosis through the alleviation of oxidative stress, thus establishing it as a promising compound for the treatment of this condition.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.