{"title":"单位信息 Dirichlet 过程先验","authors":"Jiaqi Gu, Guosheng Yin","doi":"10.1093/biomtc/ujae091","DOIUrl":null,"url":null,"abstract":"<p><p>Prior distributions, which represent one's belief in the distributions of unknown parameters before observing the data, impact Bayesian inference in a critical and fundamental way. With the ability to incorporate external information from expert opinions or historical datasets, the priors, if specified appropriately, can improve the statistical efficiency of Bayesian inference. In survival analysis, based on the concept of unit information (UI) under parametric models, we propose the unit information Dirichlet process (UIDP) as a new class of nonparametric priors for the underlying distribution of time-to-event data. By deriving the Fisher information in terms of the differential of the cumulative hazard function, the UIDP prior is formulated to match its prior UI with the weighted average of UI in historical datasets and thus can utilize both parametric and nonparametric information provided by historical datasets. With a Markov chain Monte Carlo algorithm, simulations and real data analysis demonstrate that the UIDP prior can adaptively borrow historical information and improve statistical efficiency in survival analysis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unit information Dirichlet process prior.\",\"authors\":\"Jiaqi Gu, Guosheng Yin\",\"doi\":\"10.1093/biomtc/ujae091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prior distributions, which represent one's belief in the distributions of unknown parameters before observing the data, impact Bayesian inference in a critical and fundamental way. With the ability to incorporate external information from expert opinions or historical datasets, the priors, if specified appropriately, can improve the statistical efficiency of Bayesian inference. In survival analysis, based on the concept of unit information (UI) under parametric models, we propose the unit information Dirichlet process (UIDP) as a new class of nonparametric priors for the underlying distribution of time-to-event data. By deriving the Fisher information in terms of the differential of the cumulative hazard function, the UIDP prior is formulated to match its prior UI with the weighted average of UI in historical datasets and thus can utilize both parametric and nonparametric information provided by historical datasets. With a Markov chain Monte Carlo algorithm, simulations and real data analysis demonstrate that the UIDP prior can adaptively borrow historical information and improve statistical efficiency in survival analysis.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae091\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae091","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Prior distributions, which represent one's belief in the distributions of unknown parameters before observing the data, impact Bayesian inference in a critical and fundamental way. With the ability to incorporate external information from expert opinions or historical datasets, the priors, if specified appropriately, can improve the statistical efficiency of Bayesian inference. In survival analysis, based on the concept of unit information (UI) under parametric models, we propose the unit information Dirichlet process (UIDP) as a new class of nonparametric priors for the underlying distribution of time-to-event data. By deriving the Fisher information in terms of the differential of the cumulative hazard function, the UIDP prior is formulated to match its prior UI with the weighted average of UI in historical datasets and thus can utilize both parametric and nonparametric information provided by historical datasets. With a Markov chain Monte Carlo algorithm, simulations and real data analysis demonstrate that the UIDP prior can adaptively borrow historical information and improve statistical efficiency in survival analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.