{"title":"普通人群抑郁症的非高斯责任分布。","authors":"Anna Talkkari, Tom H Rosenström","doi":"10.1177/10731911241275327","DOIUrl":null,"url":null,"abstract":"<p><p>Unlike depression sum scores, the underlying risk for depression is typically assumed to be normally distributed across the general population. To assess the true empirical shape of depression risk, we created a continuous-valued estimate of the latent depression density, using the Davidian-Curve Item Response Theory (DC-IRT) and the National Health and Nutrition Examination Survey (NHANES) cohorts from 2005 to 2018 (<i>n</i> = 36,244 on the Nine-item Patient Health Questionnaire; PHQ-9). We conducted simulations to investigate the performance of DC-IRT for large samples and realistic items. The method can recover complex latent-risk distributions even when they are not evident from sum scores. However, estimation accuracy for different sample sizes depends on the method of model selection. In addition to full-data analysis, random samples of a few thousand observations were drawn for analysis. The latent shape of depression was left-skewed and bimodal in both investigations, indicating that the latent-normality assumption does not hold for depression.</p>","PeriodicalId":8577,"journal":{"name":"Assessment","volume":" ","pages":"10731911241275327"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Gaussian Liability Distribution for Depression in the General Population.\",\"authors\":\"Anna Talkkari, Tom H Rosenström\",\"doi\":\"10.1177/10731911241275327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unlike depression sum scores, the underlying risk for depression is typically assumed to be normally distributed across the general population. To assess the true empirical shape of depression risk, we created a continuous-valued estimate of the latent depression density, using the Davidian-Curve Item Response Theory (DC-IRT) and the National Health and Nutrition Examination Survey (NHANES) cohorts from 2005 to 2018 (<i>n</i> = 36,244 on the Nine-item Patient Health Questionnaire; PHQ-9). We conducted simulations to investigate the performance of DC-IRT for large samples and realistic items. The method can recover complex latent-risk distributions even when they are not evident from sum scores. However, estimation accuracy for different sample sizes depends on the method of model selection. In addition to full-data analysis, random samples of a few thousand observations were drawn for analysis. The latent shape of depression was left-skewed and bimodal in both investigations, indicating that the latent-normality assumption does not hold for depression.</p>\",\"PeriodicalId\":8577,\"journal\":{\"name\":\"Assessment\",\"volume\":\" \",\"pages\":\"10731911241275327\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assessment\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/10731911241275327\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, CLINICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assessment","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/10731911241275327","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
Non-Gaussian Liability Distribution for Depression in the General Population.
Unlike depression sum scores, the underlying risk for depression is typically assumed to be normally distributed across the general population. To assess the true empirical shape of depression risk, we created a continuous-valued estimate of the latent depression density, using the Davidian-Curve Item Response Theory (DC-IRT) and the National Health and Nutrition Examination Survey (NHANES) cohorts from 2005 to 2018 (n = 36,244 on the Nine-item Patient Health Questionnaire; PHQ-9). We conducted simulations to investigate the performance of DC-IRT for large samples and realistic items. The method can recover complex latent-risk distributions even when they are not evident from sum scores. However, estimation accuracy for different sample sizes depends on the method of model selection. In addition to full-data analysis, random samples of a few thousand observations were drawn for analysis. The latent shape of depression was left-skewed and bimodal in both investigations, indicating that the latent-normality assumption does not hold for depression.
期刊介绍:
Assessment publishes articles in the domain of applied clinical assessment. The emphasis of this journal is on publication of information of relevance to the use of assessment measures, including test development, validation, and interpretation practices. The scope of the journal includes research that can inform assessment practices in mental health, forensic, medical, and other applied settings. Papers that focus on the assessment of cognitive and neuropsychological functioning, personality, and psychopathology are invited. Most papers published in Assessment report the results of original empirical research, however integrative review articles and scholarly case studies will also be considered.