Xiao Feng, Fan Yu, Xin-Liang He, Pei-Pei Cheng, Qian Niu, Li-Qin Zhao, Qian Li, Xiao-Lin Cui, Zi-Heng Jia, Shu-Yi Ye, Li-Mei Liang, Lin-Jie Song, Liang Xiong, Fei Xiang, Xiaorong Wang, Wan-Li Ma, Hong Ye
{"title":"CD8+组织驻留记忆T细胞对博莱霉素诱导的肺纤维化至关重要","authors":"Xiao Feng, Fan Yu, Xin-Liang He, Pei-Pei Cheng, Qian Niu, Li-Qin Zhao, Qian Li, Xiao-Lin Cui, Zi-Heng Jia, Shu-Yi Ye, Li-Mei Liang, Lin-Jie Song, Liang Xiong, Fei Xiang, Xiaorong Wang, Wan-Li Ma, Hong Ye","doi":"10.1152/ajpcell.00368.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Human tissue-resident memory T (T<sub>RM</sub>) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of T<sub>RM</sub> cells in the lung tissues of idiopathic pulmonary fibrosis patients. However, the functional consequences of T<sub>RM</sub> cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of T<sub>RM</sub> cells, especially the CD8<sup>+</sup> subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8<sup>+</sup> T<sub>RM</sub> cells in mouse lungs accordingly altered the severity of fibrosis. In addition, the adoptive transfer of CD8<sup>+</sup> T cells containing a large number of CD8<sup>+</sup> T<sub>RM</sub> cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with chemokine CC-motif ligand (CCL18) induced CD8<sup>+</sup> T<sub>RM</sub> cell expansion and exacerbated fibrosis, whereas blocking C-C chemokine receptor 8 (CCR8) prevented CD8<sup>+</sup> T<sub>RM</sub> recruitment and inhibited pulmonary fibrosis. In conclusion, CD8<sup>+</sup> T<sub>RM</sub> cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8<sup>+</sup> T<sub>RM</sub> cells may be a potential therapeutic approach. <b>NEW & NOTEWORTHY</b> The role of CD8<sup>+</sup> T<sub>RM</sub> cells in the development of pulmonary fibrosis was validated and studied in the classic model of pulmonary fibrosis. It was proposed for the first time that CCL18 has a chemotactic effect on CD8<sup>+</sup> T<sub>RM</sub> cells, thereby exacerbating pulmonary fibrosis.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1178-C1191"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CD8<sup>+</sup> tissue-resident memory T cells are essential in bleomycin-induced pulmonary fibrosis.\",\"authors\":\"Xiao Feng, Fan Yu, Xin-Liang He, Pei-Pei Cheng, Qian Niu, Li-Qin Zhao, Qian Li, Xiao-Lin Cui, Zi-Heng Jia, Shu-Yi Ye, Li-Mei Liang, Lin-Jie Song, Liang Xiong, Fei Xiang, Xiaorong Wang, Wan-Li Ma, Hong Ye\",\"doi\":\"10.1152/ajpcell.00368.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human tissue-resident memory T (T<sub>RM</sub>) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of T<sub>RM</sub> cells in the lung tissues of idiopathic pulmonary fibrosis patients. However, the functional consequences of T<sub>RM</sub> cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of T<sub>RM</sub> cells, especially the CD8<sup>+</sup> subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8<sup>+</sup> T<sub>RM</sub> cells in mouse lungs accordingly altered the severity of fibrosis. In addition, the adoptive transfer of CD8<sup>+</sup> T cells containing a large number of CD8<sup>+</sup> T<sub>RM</sub> cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with chemokine CC-motif ligand (CCL18) induced CD8<sup>+</sup> T<sub>RM</sub> cell expansion and exacerbated fibrosis, whereas blocking C-C chemokine receptor 8 (CCR8) prevented CD8<sup>+</sup> T<sub>RM</sub> recruitment and inhibited pulmonary fibrosis. In conclusion, CD8<sup>+</sup> T<sub>RM</sub> cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8<sup>+</sup> T<sub>RM</sub> cells may be a potential therapeutic approach. <b>NEW & NOTEWORTHY</b> The role of CD8<sup>+</sup> T<sub>RM</sub> cells in the development of pulmonary fibrosis was validated and studied in the classic model of pulmonary fibrosis. It was proposed for the first time that CCL18 has a chemotactic effect on CD8<sup>+</sup> T<sub>RM</sub> cells, thereby exacerbating pulmonary fibrosis.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C1178-C1191\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00368.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00368.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
人体组织驻留记忆 T 细胞(TRM)在保护机体免受感染和癌症侵害方面发挥着至关重要的作用。最近的研究发现,特发性肺纤维化患者肺组织中的TRM细胞数量有所增加。然而,TRM细胞在肺纤维化中的功能性后果仍不清楚。在这里,我们发现在博莱霉素诱导的肺纤维化小鼠肺中,TRM细胞,尤其是CD8+亚群的数量有所增加。增加或减少小鼠肺中的CD8+TRM细胞可相应地改变肺纤维化的严重程度。此外,从肺纤维化小鼠肺中收养转移含有大量CD8+TRM细胞的CD8+T细胞足以诱导对照组小鼠肺纤维化。用CCL18处理可诱导CD8+TRM细胞扩增并加剧肺纤维化,而阻断CCR8可阻止CD8+TRM招募并抑制肺纤维化。总之,CD8+ TRM细胞对博莱霉素诱导的肺纤维化至关重要,靶向CCL18/CCR8/CD8+ TRM细胞可能是一种潜在的治疗方法。
CD8+ tissue-resident memory T cells are essential in bleomycin-induced pulmonary fibrosis.
Human tissue-resident memory T (TRM) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of TRM cells in the lung tissues of idiopathic pulmonary fibrosis patients. However, the functional consequences of TRM cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of TRM cells, especially the CD8+ subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8+ TRM cells in mouse lungs accordingly altered the severity of fibrosis. In addition, the adoptive transfer of CD8+ T cells containing a large number of CD8+ TRM cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with chemokine CC-motif ligand (CCL18) induced CD8+ TRM cell expansion and exacerbated fibrosis, whereas blocking C-C chemokine receptor 8 (CCR8) prevented CD8+ TRM recruitment and inhibited pulmonary fibrosis. In conclusion, CD8+ TRM cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8+ TRM cells may be a potential therapeutic approach. NEW & NOTEWORTHY The role of CD8+ TRM cells in the development of pulmonary fibrosis was validated and studied in the classic model of pulmonary fibrosis. It was proposed for the first time that CCL18 has a chemotactic effect on CD8+ TRM cells, thereby exacerbating pulmonary fibrosis.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.