开发针对 TrkB 的新型中和单克隆抗体。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2024-10-01 Epub Date: 2024-09-05 DOI:10.1007/s13205-024-04063-x
Gamze Eda Yildirim, Erkan Yilmaz
{"title":"开发针对 TrkB 的新型中和单克隆抗体。","authors":"Gamze Eda Yildirim, Erkan Yilmaz","doi":"10.1007/s13205-024-04063-x","DOIUrl":null,"url":null,"abstract":"<p><p>The TrkB receptor, which is highly expressed in various human cancers and considered a pro-oncogene, was targeted to develop neutralizing monoclonal antibodies against its immunoglobulin-like (Ig-like) domains. Recombinant TrkB-IgL peptide, including the Ig-like C2 type 1 (Ig-C2-type 1) and Ig-like C2 type 2 (Ig-C2-type 2) domains, was expressed and purified from <i>E. coli</i>. Mice were immunized with this peptide, and hybridoma clones producing anti-TrkB-IgL antibodies were generated. Among 23 ELISA-positive TrkB-IgL hybridoma clones, four (TrkB-IgL 5.11, 4.11, 4.6, 4.3) showed anti-proliferative effects compared to the control on human breast cancer (MCF-7) and human colon cancer (HCT116) cells, as assessed using the xCELLigence system. Western blot analysis revealed that TrkB-IgL 5.11 and 4.11 significantly suppressed TrkB-mediated signaling pathways compared to the control. Purified TrkB-IgL monoclonal antibodies (mAbs) exhibited anti-proliferative effects compared to both positive and negative controls using the xCELLigence system. The TrkB-IgL 5.11 mAb notably suppressed phosphorylation of TrkB, Akt, and ERK and induced Caspase-3 and Caspase-9 activities in a dose-dependent manner, as determined by Western blotting. Additionally, immunostaining confirmed the localization of these mAbs on the SH-SY5Y cell membrane, which is known for high TrkB expression. In conclusion, the TrkB-IgL 5.11 antibody effectively inhibits cancer cell proliferation and induces apoptosis by suppressing key signaling pathways. These findings demonstrate the potential of this antibody as a therapeutic agent for cancers that overexpress TrkB. Additionally, it is considered a promising candidate for humanization, which would facilitate its application in cancer treatment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04063-x.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377376/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developing a novel neutralizing monoclonal antibody against TrkB.\",\"authors\":\"Gamze Eda Yildirim, Erkan Yilmaz\",\"doi\":\"10.1007/s13205-024-04063-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The TrkB receptor, which is highly expressed in various human cancers and considered a pro-oncogene, was targeted to develop neutralizing monoclonal antibodies against its immunoglobulin-like (Ig-like) domains. Recombinant TrkB-IgL peptide, including the Ig-like C2 type 1 (Ig-C2-type 1) and Ig-like C2 type 2 (Ig-C2-type 2) domains, was expressed and purified from <i>E. coli</i>. Mice were immunized with this peptide, and hybridoma clones producing anti-TrkB-IgL antibodies were generated. Among 23 ELISA-positive TrkB-IgL hybridoma clones, four (TrkB-IgL 5.11, 4.11, 4.6, 4.3) showed anti-proliferative effects compared to the control on human breast cancer (MCF-7) and human colon cancer (HCT116) cells, as assessed using the xCELLigence system. Western blot analysis revealed that TrkB-IgL 5.11 and 4.11 significantly suppressed TrkB-mediated signaling pathways compared to the control. Purified TrkB-IgL monoclonal antibodies (mAbs) exhibited anti-proliferative effects compared to both positive and negative controls using the xCELLigence system. The TrkB-IgL 5.11 mAb notably suppressed phosphorylation of TrkB, Akt, and ERK and induced Caspase-3 and Caspase-9 activities in a dose-dependent manner, as determined by Western blotting. Additionally, immunostaining confirmed the localization of these mAbs on the SH-SY5Y cell membrane, which is known for high TrkB expression. In conclusion, the TrkB-IgL 5.11 antibody effectively inhibits cancer cell proliferation and induces apoptosis by suppressing key signaling pathways. These findings demonstrate the potential of this antibody as a therapeutic agent for cancers that overexpress TrkB. Additionally, it is considered a promising candidate for humanization, which would facilitate its application in cancer treatment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04063-x.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377376/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04063-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04063-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

TrkB受体在各种人类癌症中高度表达,被认为是一种促癌基因,因此我们以它为目标,开发针对其免疫球蛋白样(Ig-like)结构域的中和单克隆抗体。重组 TrkB-IgL 肽,包括 Ig-like C2 类型 1(Ig-C2-type 1)和 Ig-like C2 类型 2(Ig-C2-type 2)结构域,由大肠杆菌表达和纯化。用这种多肽免疫小鼠,并产生产生抗 TrkB-IgL 抗体的杂交瘤克隆。根据 xCELLigence 系统的评估,在 23 个 ELISA 阳性的 TrkB-IgL 杂交瘤克隆中,有 4 个(TrkB-IgL 5.11、4.11、4.6、4.3)与对照组相比对人类乳腺癌(MCF-7)和人类结肠癌(HCT116)细胞具有抗增殖作用。Western 印迹分析显示,与对照组相比,TrkB-IgL 5.11 和 4.11 能显著抑制 TrkB 介导的信号通路。与使用xCELLigence系统的阳性和阴性对照相比,纯化的TrkB-IgL单克隆抗体(mAbs)具有抗增殖作用。经 Western 印迹测定,TrkB-IgL 5.11 mAb 显著抑制了 TrkB、Akt 和 ERK 的磷酸化,并以剂量依赖的方式诱导了 Caspase-3 和 Caspase-9 活性。此外,免疫染色证实了这些 mAbs 在 SH-SY5Y 细胞膜上的定位,众所周知,SH-SY5Y 细胞膜上的 TrkB 表达量很高。总之,TrkB-IgL 5.11 抗体能有效抑制癌细胞增殖,并通过抑制关键信号通路诱导细胞凋亡。这些研究结果表明,该抗体具有治疗 TrkB 过度表达的癌症的潜力。此外,它还被认为是一种有希望实现人源化的候选抗体,这将促进它在癌症治疗中的应用:在线版本包含补充材料,可查阅 10.1007/s13205-024-04063-x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Developing a novel neutralizing monoclonal antibody against TrkB.

Developing a novel neutralizing monoclonal antibody against TrkB.

The TrkB receptor, which is highly expressed in various human cancers and considered a pro-oncogene, was targeted to develop neutralizing monoclonal antibodies against its immunoglobulin-like (Ig-like) domains. Recombinant TrkB-IgL peptide, including the Ig-like C2 type 1 (Ig-C2-type 1) and Ig-like C2 type 2 (Ig-C2-type 2) domains, was expressed and purified from E. coli. Mice were immunized with this peptide, and hybridoma clones producing anti-TrkB-IgL antibodies were generated. Among 23 ELISA-positive TrkB-IgL hybridoma clones, four (TrkB-IgL 5.11, 4.11, 4.6, 4.3) showed anti-proliferative effects compared to the control on human breast cancer (MCF-7) and human colon cancer (HCT116) cells, as assessed using the xCELLigence system. Western blot analysis revealed that TrkB-IgL 5.11 and 4.11 significantly suppressed TrkB-mediated signaling pathways compared to the control. Purified TrkB-IgL monoclonal antibodies (mAbs) exhibited anti-proliferative effects compared to both positive and negative controls using the xCELLigence system. The TrkB-IgL 5.11 mAb notably suppressed phosphorylation of TrkB, Akt, and ERK and induced Caspase-3 and Caspase-9 activities in a dose-dependent manner, as determined by Western blotting. Additionally, immunostaining confirmed the localization of these mAbs on the SH-SY5Y cell membrane, which is known for high TrkB expression. In conclusion, the TrkB-IgL 5.11 antibody effectively inhibits cancer cell proliferation and induces apoptosis by suppressing key signaling pathways. These findings demonstrate the potential of this antibody as a therapeutic agent for cancers that overexpress TrkB. Additionally, it is considered a promising candidate for humanization, which would facilitate its application in cancer treatment.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04063-x.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信