{"title":"通过非接触电子需求环加成组装的天然[4+2]型萜类二聚体的最新进展。","authors":"Shaomin Fu, Bo Liu","doi":"10.1002/chem.202402786","DOIUrl":null,"url":null,"abstract":"<p>Terpenoid dimers of the [4+2] type, which are naturally occurring compounds biosynthetically derived from the [4+2] cycloaddition of two precursors, have garnered considerable attention due to their complex molecular structures, diverse biological activities, and intriguing biosynthetic pathways. We have previously summarized the advancements in three types of [4+2] terpenoid dimers. In this review, we will focus on the lesser-explored class of [4+2] terpenoid dimers which assembled from two electron-deficient precursors via the unmatched-electron-demand Diels-Alder reaction (UMEDDA). We will summarize their sources, biological activities, proposed biosynthesis, and chemical syntheses. Finally, a summary and outlook for this fascinating class of compounds will be presented.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":"30 69","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Naturally Occurring [4+2] Type Terpenoid Dimers Assembled through Unmatched-electron-demand Cycloaddition\",\"authors\":\"Shaomin Fu, Bo Liu\",\"doi\":\"10.1002/chem.202402786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Terpenoid dimers of the [4+2] type, which are naturally occurring compounds biosynthetically derived from the [4+2] cycloaddition of two precursors, have garnered considerable attention due to their complex molecular structures, diverse biological activities, and intriguing biosynthetic pathways. We have previously summarized the advancements in three types of [4+2] terpenoid dimers. In this review, we will focus on the lesser-explored class of [4+2] terpenoid dimers which assembled from two electron-deficient precursors via the unmatched-electron-demand Diels-Alder reaction (UMEDDA). We will summarize their sources, biological activities, proposed biosynthesis, and chemical syntheses. Finally, a summary and outlook for this fascinating class of compounds will be presented.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\"30 69\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202402786\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202402786","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Naturally Occurring [4+2] Type Terpenoid Dimers Assembled through Unmatched-electron-demand Cycloaddition
Terpenoid dimers of the [4+2] type, which are naturally occurring compounds biosynthetically derived from the [4+2] cycloaddition of two precursors, have garnered considerable attention due to their complex molecular structures, diverse biological activities, and intriguing biosynthetic pathways. We have previously summarized the advancements in three types of [4+2] terpenoid dimers. In this review, we will focus on the lesser-explored class of [4+2] terpenoid dimers which assembled from two electron-deficient precursors via the unmatched-electron-demand Diels-Alder reaction (UMEDDA). We will summarize their sources, biological activities, proposed biosynthesis, and chemical syntheses. Finally, a summary and outlook for this fascinating class of compounds will be presented.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.