Zachary H. Paine, Mayank Sharma, Simon H. Friedman
{"title":"使用焦磷酸特异性受体选择性溶解二水焦磷酸钙晶体","authors":"Zachary H. Paine, Mayank Sharma, Simon H. Friedman","doi":"10.1002/cbic.202400319","DOIUrl":null,"url":null,"abstract":"<p>Pseudo-gout is caused by the deposition of highly insoluble calcium pyrophosphate dihydrate (CPPD) crystals in the joints of sufferers. This leads to inflammation and ultimately joint damage. The insolubility of CPPD is driven by the strong attraction of di-cationic calcium ions with tetra-anionic pyrophosphate ions. One of the challenges of dissolving CPPD is that a related mineral, hydroxy apatite (HA) is present in larger amounts in the form of bone and also contains strongly interacting calcium and phosphate ions. Our aim in this work was to selectively dissolve CPPD in preference to HA. To accomplish this, we used a known receptor for pyrophosphate that contains two complexed zinc ions that are ideally spaced to interact with the tetra-anion of pyrophosphate. We hypothesized that such a molecule could act as a preorganized tetra-cation that would be able to outcompete the two calcium ions present in the crystal lattice of CPPD. We demonstrate both visually and through analysis of released phosphorous that this molecule is able to preferentially dissolve CPPD over the closely related HA and thus can form the basis for a possible approach for the treatment of pseudo-gout.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":"25 21","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective Dissolution of Calcium Pyrophosphate Dihydrate Crystals Using a Pyrophosphate Specific Receptor\",\"authors\":\"Zachary H. Paine, Mayank Sharma, Simon H. Friedman\",\"doi\":\"10.1002/cbic.202400319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pseudo-gout is caused by the deposition of highly insoluble calcium pyrophosphate dihydrate (CPPD) crystals in the joints of sufferers. This leads to inflammation and ultimately joint damage. The insolubility of CPPD is driven by the strong attraction of di-cationic calcium ions with tetra-anionic pyrophosphate ions. One of the challenges of dissolving CPPD is that a related mineral, hydroxy apatite (HA) is present in larger amounts in the form of bone and also contains strongly interacting calcium and phosphate ions. Our aim in this work was to selectively dissolve CPPD in preference to HA. To accomplish this, we used a known receptor for pyrophosphate that contains two complexed zinc ions that are ideally spaced to interact with the tetra-anion of pyrophosphate. We hypothesized that such a molecule could act as a preorganized tetra-cation that would be able to outcompete the two calcium ions present in the crystal lattice of CPPD. We demonstrate both visually and through analysis of released phosphorous that this molecule is able to preferentially dissolve CPPD over the closely related HA and thus can form the basis for a possible approach for the treatment of pseudo-gout.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\"25 21\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202400319\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202400319","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Selective Dissolution of Calcium Pyrophosphate Dihydrate Crystals Using a Pyrophosphate Specific Receptor
Pseudo-gout is caused by the deposition of highly insoluble calcium pyrophosphate dihydrate (CPPD) crystals in the joints of sufferers. This leads to inflammation and ultimately joint damage. The insolubility of CPPD is driven by the strong attraction of di-cationic calcium ions with tetra-anionic pyrophosphate ions. One of the challenges of dissolving CPPD is that a related mineral, hydroxy apatite (HA) is present in larger amounts in the form of bone and also contains strongly interacting calcium and phosphate ions. Our aim in this work was to selectively dissolve CPPD in preference to HA. To accomplish this, we used a known receptor for pyrophosphate that contains two complexed zinc ions that are ideally spaced to interact with the tetra-anion of pyrophosphate. We hypothesized that such a molecule could act as a preorganized tetra-cation that would be able to outcompete the two calcium ions present in the crystal lattice of CPPD. We demonstrate both visually and through analysis of released phosphorous that this molecule is able to preferentially dissolve CPPD over the closely related HA and thus can form the basis for a possible approach for the treatment of pseudo-gout.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).