通过纳米融合有效富集自由基,促进发光酚衍生碳点的电化学发光。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yujie Han, Xiang Ren, Tingting Wu, Yan Lei Li, Prof. Hongmin Ma, Zhuangzhuang Ru, Yue Jia, Zhong Feng Gao, Yu Du, Prof. Dan Wu, Prof. Qin Wei
{"title":"通过纳米融合有效富集自由基,促进发光酚衍生碳点的电化学发光。","authors":"Yujie Han,&nbsp;Xiang Ren,&nbsp;Tingting Wu,&nbsp;Yan Lei Li,&nbsp;Prof. Hongmin Ma,&nbsp;Zhuangzhuang Ru,&nbsp;Yue Jia,&nbsp;Zhong Feng Gao,&nbsp;Yu Du,&nbsp;Prof. Dan Wu,&nbsp;Prof. Qin Wei","doi":"10.1002/anie.202414073","DOIUrl":null,"url":null,"abstract":"<p>Local enrichment of free radicals at the electrode interface may open new opportunities for the development of electrochemiluminescence (ECL) applications. The sensing platform was constructed by assembling ECL-emitting luminol derived carbon dots (Lu CDs) onto the heterojunction Tungsten disulfide/Covalent organic frameworks (WS<sub>2</sub>@COF) for the first time, establishing a nanoconfinement-reactor with significantly heightened ECL intensity and stability compared to the Lu CDs-H<sub>2</sub>O<sub>2</sub> system. This enhanced performance is credited to the COF domain‘s restricted pore environment, where WS<sub>2</sub>@COF exhibits a more negative adsorption energy for H<sub>2</sub>O<sub>2</sub>, effectively enriching H<sub>2</sub>O<sub>2</sub> in the catalytic edge sites of WS<sub>2</sub>. Furthermore, the internal electric field at the WS<sub>2</sub> and COF interface accelerates electron flow, boosting WS<sub>2</sub>′s catalytic activity and achieving domain-limited catalytic enhancement of ECL. Self-designed DNA nanomachines combined with cascading molecular keypad locking mechanisms are integrated into the biosensors, effectively guaranteeing the accuracy of the sensing process while providing crucial safeguards for molecular diagnostics and information security applications. In essence, this innovative approach represents the first system to enhance local free radical concentrations by enriching co-reactants on the electrode surface through nanoconfinement catalysis, yielding heightened ECL intensity. The potential impact of this novel strategy and sensing mechanism on real-bioanalysis applications is promising.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 2","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Enrichment of Free Radicals through Nanoconfinement Boosts Electrochemiluminescence of Carbon Dots Derived from Luminol\",\"authors\":\"Yujie Han,&nbsp;Xiang Ren,&nbsp;Tingting Wu,&nbsp;Yan Lei Li,&nbsp;Prof. Hongmin Ma,&nbsp;Zhuangzhuang Ru,&nbsp;Yue Jia,&nbsp;Zhong Feng Gao,&nbsp;Yu Du,&nbsp;Prof. Dan Wu,&nbsp;Prof. Qin Wei\",\"doi\":\"10.1002/anie.202414073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Local enrichment of free radicals at the electrode interface may open new opportunities for the development of electrochemiluminescence (ECL) applications. The sensing platform was constructed by assembling ECL-emitting luminol derived carbon dots (Lu CDs) onto the heterojunction Tungsten disulfide/Covalent organic frameworks (WS<sub>2</sub>@COF) for the first time, establishing a nanoconfinement-reactor with significantly heightened ECL intensity and stability compared to the Lu CDs-H<sub>2</sub>O<sub>2</sub> system. This enhanced performance is credited to the COF domain‘s restricted pore environment, where WS<sub>2</sub>@COF exhibits a more negative adsorption energy for H<sub>2</sub>O<sub>2</sub>, effectively enriching H<sub>2</sub>O<sub>2</sub> in the catalytic edge sites of WS<sub>2</sub>. Furthermore, the internal electric field at the WS<sub>2</sub> and COF interface accelerates electron flow, boosting WS<sub>2</sub>′s catalytic activity and achieving domain-limited catalytic enhancement of ECL. Self-designed DNA nanomachines combined with cascading molecular keypad locking mechanisms are integrated into the biosensors, effectively guaranteeing the accuracy of the sensing process while providing crucial safeguards for molecular diagnostics and information security applications. In essence, this innovative approach represents the first system to enhance local free radical concentrations by enriching co-reactants on the electrode surface through nanoconfinement catalysis, yielding heightened ECL intensity. The potential impact of this novel strategy and sensing mechanism on real-bioanalysis applications is promising.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 2\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414073\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414073","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电极界面上自由基的局部富集可能为电化学发光(ECL)应用的发展带来新的机遇。该传感平台是通过首次在二硫化钨/共价有机框架(WS2@COF)异质结上组装发光酚衍生碳点(Lu CDs)而构建的,与 Lu CDs-H2O2 系统相比,它建立的纳米污染反应器显著提高了 ECL 强度和稳定性。WS2@COF 对 H2O2 具有更负的吸附能,从而有效地在 WS2 的催化边缘位点富集了 H2O2。此外,WS2 和 COF 界面的内部电场加速了电子流动,提高了 WS2 的催化活性,实现了 ECL 的限域催化增强。自行设计的 DNA 纳米机械与级联分子键盘锁定机制集成到生物传感器中,有效保证了传感过程的准确性,同时为分子诊断和信息安全应用提供了重要保障。从本质上讲,这种创新方法代表了首个通过纳米催化富集电极表面共反应物来提高局部自由基浓度的系统,从而产生更高的 ECL 发光强度。这种新型策略和传感机制对实际生物分析应用的潜在影响令人期待。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effective Enrichment of Free Radicals through Nanoconfinement Boosts Electrochemiluminescence of Carbon Dots Derived from Luminol

Effective Enrichment of Free Radicals through Nanoconfinement Boosts Electrochemiluminescence of Carbon Dots Derived from Luminol

Local enrichment of free radicals at the electrode interface may open new opportunities for the development of electrochemiluminescence (ECL) applications. The sensing platform was constructed by assembling ECL-emitting luminol derived carbon dots (Lu CDs) onto the heterojunction Tungsten disulfide/Covalent organic frameworks (WS2@COF) for the first time, establishing a nanoconfinement-reactor with significantly heightened ECL intensity and stability compared to the Lu CDs-H2O2 system. This enhanced performance is credited to the COF domain‘s restricted pore environment, where WS2@COF exhibits a more negative adsorption energy for H2O2, effectively enriching H2O2 in the catalytic edge sites of WS2. Furthermore, the internal electric field at the WS2 and COF interface accelerates electron flow, boosting WS2′s catalytic activity and achieving domain-limited catalytic enhancement of ECL. Self-designed DNA nanomachines combined with cascading molecular keypad locking mechanisms are integrated into the biosensors, effectively guaranteeing the accuracy of the sensing process while providing crucial safeguards for molecular diagnostics and information security applications. In essence, this innovative approach represents the first system to enhance local free radical concentrations by enriching co-reactants on the electrode surface through nanoconfinement catalysis, yielding heightened ECL intensity. The potential impact of this novel strategy and sensing mechanism on real-bioanalysis applications is promising.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信