利用临界阻尼悬臂探究液滴摩擦的物理根源。

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-09-02 DOI:10.1039/D4SM00601A
Sankara Arunachalam, Marcus Lin and Dan Daniel
{"title":"利用临界阻尼悬臂探究液滴摩擦的物理根源。","authors":"Sankara Arunachalam, Marcus Lin and Dan Daniel","doi":"10.1039/D4SM00601A","DOIUrl":null,"url":null,"abstract":"<p >Previously, we and others have used cantilever-based techniques to measure droplet friction on various surfaces, but typically at low speeds <em>U</em> &lt; 1 mm s<small><sup>−1</sup></small>; at higher speeds, friction measurements become inaccurate because of ringing artefacts. Here, we are able to eliminate the ringing noise using a critically damped cantilever. We measured droplet friction on a superhydrophobic surface over a wide range of speeds <em>U</em> = 10<small><sup>−5</sup></small>–10<small><sup>−1</sup></small> m s<small><sup>−1</sup></small> and identified two regimes corresponding to two different physical origins of droplet friction. At low speeds <em>U</em> &lt; 1 cm s<small><sup>−1</sup></small>, the droplet is in contact with the top-most solid (Cassie–Baxter), and friction is dominated by contact-line pinning with <em>F</em><small><sub>fric</sub></small> force that is independent of <em>U</em>. In contrast, at high speeds <em>U</em> &gt; 1 cm s<small><sup>−1</sup></small>, the droplet lifts off the surface, and friction is dominated by viscous dissipation in the air layer with <em>F</em><small><sub>fric</sub></small> ∝ <em>U</em><small><sup>2/3</sup></small> consistent with Landau–Levich–Derjaguin predictions. The same scaling applies for superhydrophobic and underwater superoleophobic surfaces despite their very different surface topographies and chemistries, <em>i.e.</em>, the friction scaling law derived here is universal.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00601a?page=search","citationCount":"0","resultStr":"{\"title\":\"Probing the physical origins of droplet friction using a critically damped cantilever†\",\"authors\":\"Sankara Arunachalam, Marcus Lin and Dan Daniel\",\"doi\":\"10.1039/D4SM00601A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Previously, we and others have used cantilever-based techniques to measure droplet friction on various surfaces, but typically at low speeds <em>U</em> &lt; 1 mm s<small><sup>−1</sup></small>; at higher speeds, friction measurements become inaccurate because of ringing artefacts. Here, we are able to eliminate the ringing noise using a critically damped cantilever. We measured droplet friction on a superhydrophobic surface over a wide range of speeds <em>U</em> = 10<small><sup>−5</sup></small>–10<small><sup>−1</sup></small> m s<small><sup>−1</sup></small> and identified two regimes corresponding to two different physical origins of droplet friction. At low speeds <em>U</em> &lt; 1 cm s<small><sup>−1</sup></small>, the droplet is in contact with the top-most solid (Cassie–Baxter), and friction is dominated by contact-line pinning with <em>F</em><small><sub>fric</sub></small> force that is independent of <em>U</em>. In contrast, at high speeds <em>U</em> &gt; 1 cm s<small><sup>−1</sup></small>, the droplet lifts off the surface, and friction is dominated by viscous dissipation in the air layer with <em>F</em><small><sub>fric</sub></small> ∝ <em>U</em><small><sup>2/3</sup></small> consistent with Landau–Levich–Derjaguin predictions. The same scaling applies for superhydrophobic and underwater superoleophobic surfaces despite their very different surface topographies and chemistries, <em>i.e.</em>, the friction scaling law derived here is universal.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/sm/d4sm00601a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00601a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm00601a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以前,我们和其他人曾使用基于悬臂的技术来测量液滴在各种表面上的摩擦力,但通常是在低速 U < 1 mm s-1 的情况下;在高速情况下,摩擦力测量会因振铃伪影而变得不准确。在这里,我们使用临界阻尼悬臂消除了振铃噪声。我们在 U = 10-5-10-1 m s-1 的较宽速度范围内测量了超疏水表面上的液滴摩擦力,并确定了与液滴摩擦力的两种不同物理来源相对应的两种状态。在低速 U < 1 cm s-1 时,液滴与最顶端的固体接触(Cassie-Baxter),摩擦力主要由接触线引力支配,Ffric 与 U 无关;相反,在高速 U > 1 cm s-1 时,液滴脱离表面,摩擦力主要由空气层中的粘性耗散支配,Ffric ∝ U2/3 与 Landau-Levich-Derjaguin 预测一致。尽管超疏水性表面和水下超疏水性表面的表面形貌和化学性质截然不同,但同样的缩放规律也适用于它们,也就是说,这里得出的摩擦缩放规律是通用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probing the physical origins of droplet friction using a critically damped cantilever†

Probing the physical origins of droplet friction using a critically damped cantilever†

Probing the physical origins of droplet friction using a critically damped cantilever†

Previously, we and others have used cantilever-based techniques to measure droplet friction on various surfaces, but typically at low speeds U < 1 mm s−1; at higher speeds, friction measurements become inaccurate because of ringing artefacts. Here, we are able to eliminate the ringing noise using a critically damped cantilever. We measured droplet friction on a superhydrophobic surface over a wide range of speeds U = 10−5–10−1 m s−1 and identified two regimes corresponding to two different physical origins of droplet friction. At low speeds U < 1 cm s−1, the droplet is in contact with the top-most solid (Cassie–Baxter), and friction is dominated by contact-line pinning with Ffric force that is independent of U. In contrast, at high speeds U > 1 cm s−1, the droplet lifts off the surface, and friction is dominated by viscous dissipation in the air layer with FfricU2/3 consistent with Landau–Levich–Derjaguin predictions. The same scaling applies for superhydrophobic and underwater superoleophobic surfaces despite their very different surface topographies and chemistries, i.e., the friction scaling law derived here is universal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Where physics meets chemistry meets biology for fundamental soft matter research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信