原子缺陷工程促进尿素合成,实现二氧化碳和硝酸盐共电还原。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2024-09-18 Epub Date: 2024-09-09 DOI:10.1021/acs.nanolett.4c03451
Zifan Xu, Zhengwu Yang, Huan Lu, Jiangchen Zhu, Junlin Li, Ming-Hui Fan, Zhi Zhao, Xiangdong Kong, Ke Wang, Zhigang Geng
{"title":"原子缺陷工程促进尿素合成,实现二氧化碳和硝酸盐共电还原。","authors":"Zifan Xu, Zhengwu Yang, Huan Lu, Jiangchen Zhu, Junlin Li, Ming-Hui Fan, Zhi Zhao, Xiangdong Kong, Ke Wang, Zhigang Geng","doi":"10.1021/acs.nanolett.4c03451","DOIUrl":null,"url":null,"abstract":"<p><p>The atomic defect engineering could feasibly decorate the chemical behaviors of reaction intermediates to regulate catalytic performance. Herein, we created oxygen vacancies on the surface of In(OH)<sub>3</sub> nanobelts for efficient urea electrosynthesis. When the oxygen vacancies were constructed on the surface of the In(OH)<sub>3</sub> nanobelts, the faradaic efficiency for urea reached 80.1%, which is 2.9 times higher than that (20.7%) of the pristine In(OH)<sub>3</sub> nanobelts. At -0.8 V versus reversible hydrogen electrode, In(OH)<sub>3</sub> nanobelts with abundant oxygen vacancies exhibited partial current density for urea of -18.8 mA cm<sup>-2</sup>. Such a value represents the highest activity for urea electrosynthesis among recent reports. Density functional theory calculations suggested that the unsaturated In sites adjacent to oxygen defects helped to optimize the adsorbed configurations of key intermediates, promoting both the C-N coupling and the activation of the adsorbed CO<sub>2</sub>NH<sub>2</sub> intermediate. In-situ spectroscopy measurements further validated the promotional effect of the oxygen vacancies on urea electrosynthesis.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Defects Engineering Boosts Urea Synthesis toward Carbon Dioxide and Nitrate Coelectroreduction.\",\"authors\":\"Zifan Xu, Zhengwu Yang, Huan Lu, Jiangchen Zhu, Junlin Li, Ming-Hui Fan, Zhi Zhao, Xiangdong Kong, Ke Wang, Zhigang Geng\",\"doi\":\"10.1021/acs.nanolett.4c03451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The atomic defect engineering could feasibly decorate the chemical behaviors of reaction intermediates to regulate catalytic performance. Herein, we created oxygen vacancies on the surface of In(OH)<sub>3</sub> nanobelts for efficient urea electrosynthesis. When the oxygen vacancies were constructed on the surface of the In(OH)<sub>3</sub> nanobelts, the faradaic efficiency for urea reached 80.1%, which is 2.9 times higher than that (20.7%) of the pristine In(OH)<sub>3</sub> nanobelts. At -0.8 V versus reversible hydrogen electrode, In(OH)<sub>3</sub> nanobelts with abundant oxygen vacancies exhibited partial current density for urea of -18.8 mA cm<sup>-2</sup>. Such a value represents the highest activity for urea electrosynthesis among recent reports. Density functional theory calculations suggested that the unsaturated In sites adjacent to oxygen defects helped to optimize the adsorbed configurations of key intermediates, promoting both the C-N coupling and the activation of the adsorbed CO<sub>2</sub>NH<sub>2</sub> intermediate. In-situ spectroscopy measurements further validated the promotional effect of the oxygen vacancies on urea electrosynthesis.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03451\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03451","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原子缺陷工程可以装饰反应中间产物的化学行为,从而调节催化性能。在此,我们在 In(OH)3 纳米颗粒表面制造了氧空位,以实现高效尿素电合成。在 In(OH)3 纳米颗粒表面形成氧空位后,尿素的远红外效率达到 80.1%,是原始 In(OH)3 纳米颗粒的 2.9 倍(20.7%)。与可逆氢电极相比,在-0.8 V电压下,具有丰富氧空位的In(OH)3纳米颗粒对尿素的部分电流密度为-18.8 mA cm-2。这一数值代表了近期报道的最高尿素电合成活性。密度泛函理论计算表明,与氧缺陷相邻的不饱和 In 位点有助于优化关键中间产物的吸附构型,促进 C-N 偶联和吸附的 CO2NH2 中间产物的活化。原位光谱测量进一步验证了氧空位对尿素电合成的促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atomic Defects Engineering Boosts Urea Synthesis toward Carbon Dioxide and Nitrate Coelectroreduction.

Atomic Defects Engineering Boosts Urea Synthesis toward Carbon Dioxide and Nitrate Coelectroreduction.

The atomic defect engineering could feasibly decorate the chemical behaviors of reaction intermediates to regulate catalytic performance. Herein, we created oxygen vacancies on the surface of In(OH)3 nanobelts for efficient urea electrosynthesis. When the oxygen vacancies were constructed on the surface of the In(OH)3 nanobelts, the faradaic efficiency for urea reached 80.1%, which is 2.9 times higher than that (20.7%) of the pristine In(OH)3 nanobelts. At -0.8 V versus reversible hydrogen electrode, In(OH)3 nanobelts with abundant oxygen vacancies exhibited partial current density for urea of -18.8 mA cm-2. Such a value represents the highest activity for urea electrosynthesis among recent reports. Density functional theory calculations suggested that the unsaturated In sites adjacent to oxygen defects helped to optimize the adsorbed configurations of key intermediates, promoting both the C-N coupling and the activation of the adsorbed CO2NH2 intermediate. In-situ spectroscopy measurements further validated the promotional effect of the oxygen vacancies on urea electrosynthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信