Jian Peng, Chao Li, Fei Cheng, Li Wu, Wei-wei Xu, Zhi-jie Liu
{"title":"使用紧密耦合偶极子结构的电阻器负载型宽带偏振无关吸收器","authors":"Jian Peng, Chao Li, Fei Cheng, Li Wu, Wei-wei Xu, Zhi-jie Liu","doi":"10.1155/2024/5321173","DOIUrl":null,"url":null,"abstract":"<p>This article presents a resistor-loaded wideband absorber using a tightly coupled dipole structure. The conversional inherit wide bandwidth tightly coupled dipole which was used as an antenna is adopted as a unit cell. The port of the dipole is loaded with resistors to dissipate the microwave energy. The design principles of the absorber are given. An equivalent circuit model composed of an RLC resonant circuit is proposed to analyze the performance of the absorber. To demonstrate, a 288 mm × 288 mm absorber ranging from 1.96 to 8.08 GHz is fabricated and measured. The measured results agree well with the simulated ones which show that the absorber can work from 2 to 8.18 GHz with an absorption rate of more than 90%. Moreover, the proposed absorber is also insensitive to the polarization angle of the incident wave. When the incident angle changes from 0° to 45°, the absorption rate is nearly unchanged over the operating band.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5321173","citationCount":"0","resultStr":"{\"title\":\"Resistor-Loaded Wideband Polarization Independent Absorber Using Tightly Coupled Dipole Structure\",\"authors\":\"Jian Peng, Chao Li, Fei Cheng, Li Wu, Wei-wei Xu, Zhi-jie Liu\",\"doi\":\"10.1155/2024/5321173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents a resistor-loaded wideband absorber using a tightly coupled dipole structure. The conversional inherit wide bandwidth tightly coupled dipole which was used as an antenna is adopted as a unit cell. The port of the dipole is loaded with resistors to dissipate the microwave energy. The design principles of the absorber are given. An equivalent circuit model composed of an RLC resonant circuit is proposed to analyze the performance of the absorber. To demonstrate, a 288 mm × 288 mm absorber ranging from 1.96 to 8.08 GHz is fabricated and measured. The measured results agree well with the simulated ones which show that the absorber can work from 2 to 8.18 GHz with an absorption rate of more than 90%. Moreover, the proposed absorber is also insensitive to the polarization angle of the incident wave. When the incident angle changes from 0° to 45°, the absorption rate is nearly unchanged over the operating band.</p>\",\"PeriodicalId\":54944,\"journal\":{\"name\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5321173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of RF and Microwave Computer-Aided Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5321173\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5321173","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Resistor-Loaded Wideband Polarization Independent Absorber Using Tightly Coupled Dipole Structure
This article presents a resistor-loaded wideband absorber using a tightly coupled dipole structure. The conversional inherit wide bandwidth tightly coupled dipole which was used as an antenna is adopted as a unit cell. The port of the dipole is loaded with resistors to dissipate the microwave energy. The design principles of the absorber are given. An equivalent circuit model composed of an RLC resonant circuit is proposed to analyze the performance of the absorber. To demonstrate, a 288 mm × 288 mm absorber ranging from 1.96 to 8.08 GHz is fabricated and measured. The measured results agree well with the simulated ones which show that the absorber can work from 2 to 8.18 GHz with an absorption rate of more than 90%. Moreover, the proposed absorber is also insensitive to the polarization angle of the incident wave. When the incident angle changes from 0° to 45°, the absorption rate is nearly unchanged over the operating band.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.