{"title":"大类矩阵的有价不变式","authors":"Luis Ferroni, Benjamin Schröter","doi":"10.1112/jlms.12984","DOIUrl":null,"url":null,"abstract":"<p>We study an operation in matroid theory that allows one to transition a given matroid into another with more bases via relaxing a <i>stressed subset</i>. This framework provides a new combinatorial characterization of the class of (elementary) split matroids. Moreover, it permits to describe an explicit matroid subdivision of a hypersimplex, which, in turn, can be used to write down concrete formulas for the evaluations of any valuative invariant on these matroids. This shows that evaluations on these matroids depend solely on the behavior of the invariant on a tractable subclass of Schubert matroids. We address systematically the consequences of our approach for several invariants. They include the volume and Ehrhart polynomial of base polytopes, the Tutte polynomial, Kazhdan–Lusztig polynomials, the Whitney numbers of the first and second kinds, spectrum polynomials and a generalization of these by Denham, chain polynomials and Speyer's <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math>-polynomials, as well as Chow rings of matroids and their Hilbert–Poincaré series. The flexibility of this setting allows us to give a unified explanation for several recent results regarding the listed invariants; furthermore, we emphasize it as a powerful computational tool to produce explicit data and concrete examples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12984","citationCount":"0","resultStr":"{\"title\":\"Valuative invariants for large classes of matroids\",\"authors\":\"Luis Ferroni, Benjamin Schröter\",\"doi\":\"10.1112/jlms.12984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study an operation in matroid theory that allows one to transition a given matroid into another with more bases via relaxing a <i>stressed subset</i>. This framework provides a new combinatorial characterization of the class of (elementary) split matroids. Moreover, it permits to describe an explicit matroid subdivision of a hypersimplex, which, in turn, can be used to write down concrete formulas for the evaluations of any valuative invariant on these matroids. This shows that evaluations on these matroids depend solely on the behavior of the invariant on a tractable subclass of Schubert matroids. We address systematically the consequences of our approach for several invariants. They include the volume and Ehrhart polynomial of base polytopes, the Tutte polynomial, Kazhdan–Lusztig polynomials, the Whitney numbers of the first and second kinds, spectrum polynomials and a generalization of these by Denham, chain polynomials and Speyer's <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math>-polynomials, as well as Chow rings of matroids and their Hilbert–Poincaré series. The flexibility of this setting allows us to give a unified explanation for several recent results regarding the listed invariants; furthermore, we emphasize it as a powerful computational tool to produce explicit data and concrete examples.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12984\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12984\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12984","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了矩阵理论中的一种运算,这种运算允许我们通过放松一个受压子集,将给定的矩阵转换成另一个有更多基的矩阵。这一框架为(基本)分裂矩阵类提供了新的组合特征。此外,它还允许描述一个超复数的显式矩阵细分,反过来,它可以用来写出这些矩阵上任何估值不变式的求值的具体公式。这表明,在这些矩阵上的求值完全取决于不变量在舒伯特矩阵的一个可操作子类上的行为。我们系统地讨论了我们的方法对几个不变式的影响。它们包括基多面体的体积和埃尔哈特多项式、图特多项式、卡兹丹-卢兹蒂格多项式、第一和第二种惠特尼数、谱多项式和德纳姆对这些多项式的广义化、链多项式和斯佩尔的 g $g$ 多项式,以及矩阵的周环和它们的希尔伯特-庞加莱数列。这种设置的灵活性使我们能够统一解释有关所列不变式的若干最新结果;此外,我们强调它是一种强大的计算工具,可以生成明确的数据和具体的例子。
Valuative invariants for large classes of matroids
We study an operation in matroid theory that allows one to transition a given matroid into another with more bases via relaxing a stressed subset. This framework provides a new combinatorial characterization of the class of (elementary) split matroids. Moreover, it permits to describe an explicit matroid subdivision of a hypersimplex, which, in turn, can be used to write down concrete formulas for the evaluations of any valuative invariant on these matroids. This shows that evaluations on these matroids depend solely on the behavior of the invariant on a tractable subclass of Schubert matroids. We address systematically the consequences of our approach for several invariants. They include the volume and Ehrhart polynomial of base polytopes, the Tutte polynomial, Kazhdan–Lusztig polynomials, the Whitney numbers of the first and second kinds, spectrum polynomials and a generalization of these by Denham, chain polynomials and Speyer's -polynomials, as well as Chow rings of matroids and their Hilbert–Poincaré series. The flexibility of this setting allows us to give a unified explanation for several recent results regarding the listed invariants; furthermore, we emphasize it as a powerful computational tool to produce explicit data and concrete examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.