电动汽车电池热管理系统中 PCM 和石墨翅片复合材料冷却性能的研究

Energy Storage Pub Date : 2024-09-05 DOI:10.1002/est2.70024
Nikhil S. Mane, Pradyumna Kodancha, Vadiraj Hemadri, Siddhartha Tripathi
{"title":"电动汽车电池热管理系统中 PCM 和石墨翅片复合材料冷却性能的研究","authors":"Nikhil S. Mane,&nbsp;Pradyumna Kodancha,&nbsp;Vadiraj Hemadri,&nbsp;Siddhartha Tripathi","doi":"10.1002/est2.70024","DOIUrl":null,"url":null,"abstract":"<p>Modern electric vehicle (EV) batteries need phase change materials (PCM) that are capable of efficient battery cooling. In this work, a composite PCM is prepared by mixing Fe<sub>3</sub>O<sub>4</sub> nanoparticles (1 wt.%) in paraffin, and the effects of these nanoparticles on the enthalpy and melting point of PCM are studied. It is found that the Fe<sub>3</sub>O<sub>4</sub> nanoparticle additives reduce the onset of melting from 61.46°C to 57.03°C. The composite PCM is used for the cooling of a battery module of 6 substitute-18 650 batteries, and the cooling performance is experimentally and numerically investigated. The hybrid battery thermal management system (BTMS) utilizing composite paraffin demonstrates a significant reduction of 11.2°C in lithium-ion battery (LIB) temperature compared with natural convection cooling at a heat generation rate of 2W. The numerical results in this study are in good agreement with the experimental temperature values, with a modest mean absolute error of 1.35°C detected between experimentally obtained and simulated battery temperature values. In order to deal with the low thermal conductivity of liquid PCM after PCM melting, a numerical investigation is conducted to study the effect of a graphite fin on the battery temperature. The use of a fin in hybrid BTMS considerably reduces the temperature of LIBs and temperature difference in the module. The numerical simulations capture the behavior of the phase change phenomenon, showing the evolution of liquid PCM under constant heating. This work presents the dynamic melting patterns of PCM along the length of LIB with and without a fin, which is useful for the effective design of BTMS.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70024","citationCount":"0","resultStr":"{\"title\":\"Investigation on Cooling Performance of Composite PCM and Graphite Fin for Battery Thermal Management System of Electric Vehicles\",\"authors\":\"Nikhil S. Mane,&nbsp;Pradyumna Kodancha,&nbsp;Vadiraj Hemadri,&nbsp;Siddhartha Tripathi\",\"doi\":\"10.1002/est2.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern electric vehicle (EV) batteries need phase change materials (PCM) that are capable of efficient battery cooling. In this work, a composite PCM is prepared by mixing Fe<sub>3</sub>O<sub>4</sub> nanoparticles (1 wt.%) in paraffin, and the effects of these nanoparticles on the enthalpy and melting point of PCM are studied. It is found that the Fe<sub>3</sub>O<sub>4</sub> nanoparticle additives reduce the onset of melting from 61.46°C to 57.03°C. The composite PCM is used for the cooling of a battery module of 6 substitute-18 650 batteries, and the cooling performance is experimentally and numerically investigated. The hybrid battery thermal management system (BTMS) utilizing composite paraffin demonstrates a significant reduction of 11.2°C in lithium-ion battery (LIB) temperature compared with natural convection cooling at a heat generation rate of 2W. The numerical results in this study are in good agreement with the experimental temperature values, with a modest mean absolute error of 1.35°C detected between experimentally obtained and simulated battery temperature values. In order to deal with the low thermal conductivity of liquid PCM after PCM melting, a numerical investigation is conducted to study the effect of a graphite fin on the battery temperature. The use of a fin in hybrid BTMS considerably reduces the temperature of LIBs and temperature difference in the module. The numerical simulations capture the behavior of the phase change phenomenon, showing the evolution of liquid PCM under constant heating. This work presents the dynamic melting patterns of PCM along the length of LIB with and without a fin, which is useful for the effective design of BTMS.</p>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代电动汽车 (EV) 电池需要能够有效冷却电池的相变材料 (PCM)。在这项工作中,通过在石蜡中混合 Fe3O4 纳米粒子(1 wt.%)制备了一种复合 PCM,并研究了这些纳米粒子对 PCM 的焓和熔点的影响。研究发现,Fe3O4 纳米粒子添加剂可将熔点从 61.46°C 降至 57.03°C。复合 PCM 被用于冷却由 6 个替代-18 650 电池组成的电池模块,并对冷却性能进行了实验和数值研究。利用复合石蜡的混合电池热管理系统 (BTMS) 在发热量为 2W 时,与自然对流冷却相比,锂离子电池 (LIB) 温度显著降低了 11.2°C。本研究的数值结果与实验温度值十分吻合,实验温度值与模拟电池温度值之间的平均绝对误差仅为 1.35°C。针对液态 PCM 熔化后热导率较低的问题,我们进行了一项数值调查,研究石墨鳍片对电池温度的影响。在混合 BTMS 中使用石墨鳍片可大大降低 LIB 的温度和模块中的温差。数值模拟捕捉到了相变现象的行为,显示了液态 PCM 在持续加热下的演变过程。这项工作展示了有鳍片和无鳍片 LIB 沿长度方向的 PCM 动态熔化模式,有助于有效设计 BTMS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation on Cooling Performance of Composite PCM and Graphite Fin for Battery Thermal Management System of Electric Vehicles

Investigation on Cooling Performance of Composite PCM and Graphite Fin for Battery Thermal Management System of Electric Vehicles

Modern electric vehicle (EV) batteries need phase change materials (PCM) that are capable of efficient battery cooling. In this work, a composite PCM is prepared by mixing Fe3O4 nanoparticles (1 wt.%) in paraffin, and the effects of these nanoparticles on the enthalpy and melting point of PCM are studied. It is found that the Fe3O4 nanoparticle additives reduce the onset of melting from 61.46°C to 57.03°C. The composite PCM is used for the cooling of a battery module of 6 substitute-18 650 batteries, and the cooling performance is experimentally and numerically investigated. The hybrid battery thermal management system (BTMS) utilizing composite paraffin demonstrates a significant reduction of 11.2°C in lithium-ion battery (LIB) temperature compared with natural convection cooling at a heat generation rate of 2W. The numerical results in this study are in good agreement with the experimental temperature values, with a modest mean absolute error of 1.35°C detected between experimentally obtained and simulated battery temperature values. In order to deal with the low thermal conductivity of liquid PCM after PCM melting, a numerical investigation is conducted to study the effect of a graphite fin on the battery temperature. The use of a fin in hybrid BTMS considerably reduces the temperature of LIBs and temperature difference in the module. The numerical simulations capture the behavior of the phase change phenomenon, showing the evolution of liquid PCM under constant heating. This work presents the dynamic melting patterns of PCM along the length of LIB with and without a fin, which is useful for the effective design of BTMS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信