{"title":"拦水坝建设对黄土高原沟谷泥沙产生和地形变化的影响:降雨模拟实验","authors":"Shaobo Xue, Peng Li, Zhiwei Cui, Zhanbin Li, Zhenzhou Shen","doi":"10.1002/hyp.15271","DOIUrl":null,"url":null,"abstract":"<p>To maintain a reasonable sediment regulation system in the Loess Plateau, it is critical to determine the effects of check dam construction on sediment production and topographic changes. An indoor simulation experiment was conducted to investigate sediment production at the outlet section of the gully and micro-topographic changes within the channel before and after dam construction. The results showed that check dam significantly affected the run-off and sediment transport processes in the watershed. Specifically, the cross-sectional morphology index (<i>η</i>) and the width-depth ratio increased by 10.23% and 40.44%, respectively, while sediment content and particle size decreased by 39.29% and 18.58%, respectively. Additionally, the relative importance of section parameters and micro-topographic parameters that affect sediment production rate and particle size was ranked using the random forest algorithm. The roughness after check dam construction was identified as a relatively important topographic factor affecting sediment production and particle selection by erosion. These findings provide valuable information for future check dam construction and development in the Loess Plateau region.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of check dam construction on sediment production and topographic changes in a gully in the Loess Plateau: A rainfall simulation experiment\",\"authors\":\"Shaobo Xue, Peng Li, Zhiwei Cui, Zhanbin Li, Zhenzhou Shen\",\"doi\":\"10.1002/hyp.15271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To maintain a reasonable sediment regulation system in the Loess Plateau, it is critical to determine the effects of check dam construction on sediment production and topographic changes. An indoor simulation experiment was conducted to investigate sediment production at the outlet section of the gully and micro-topographic changes within the channel before and after dam construction. The results showed that check dam significantly affected the run-off and sediment transport processes in the watershed. Specifically, the cross-sectional morphology index (<i>η</i>) and the width-depth ratio increased by 10.23% and 40.44%, respectively, while sediment content and particle size decreased by 39.29% and 18.58%, respectively. Additionally, the relative importance of section parameters and micro-topographic parameters that affect sediment production rate and particle size was ranked using the random forest algorithm. The roughness after check dam construction was identified as a relatively important topographic factor affecting sediment production and particle selection by erosion. These findings provide valuable information for future check dam construction and development in the Loess Plateau region.</p>\",\"PeriodicalId\":13189,\"journal\":{\"name\":\"Hydrological Processes\",\"volume\":\"38 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15271\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15271","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Effects of check dam construction on sediment production and topographic changes in a gully in the Loess Plateau: A rainfall simulation experiment
To maintain a reasonable sediment regulation system in the Loess Plateau, it is critical to determine the effects of check dam construction on sediment production and topographic changes. An indoor simulation experiment was conducted to investigate sediment production at the outlet section of the gully and micro-topographic changes within the channel before and after dam construction. The results showed that check dam significantly affected the run-off and sediment transport processes in the watershed. Specifically, the cross-sectional morphology index (η) and the width-depth ratio increased by 10.23% and 40.44%, respectively, while sediment content and particle size decreased by 39.29% and 18.58%, respectively. Additionally, the relative importance of section parameters and micro-topographic parameters that affect sediment production rate and particle size was ranked using the random forest algorithm. The roughness after check dam construction was identified as a relatively important topographic factor affecting sediment production and particle selection by erosion. These findings provide valuable information for future check dam construction and development in the Loess Plateau region.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.