结合 RPA 和 CRISPR/Cas12a 快速检测肺炎克雷伯氏菌的免提取一次检测法

IF 10.7 1区 生物学 Q1 BIOPHYSICS
{"title":"结合 RPA 和 CRISPR/Cas12a 快速检测肺炎克雷伯氏菌的免提取一次检测法","authors":"","doi":"10.1016/j.bios.2024.116740","DOIUrl":null,"url":null,"abstract":"<div><p><em>Klebsiella pneumoniae</em> poses a significant threat to global public health. Traditional clinical diagnostic methods, such as bacterial culture and microscopic identification, are not suitable for point-of-care testing. In response, based on the suboptimal protospacer adjacent motifs, this study develops an extraction-free one-pot assay, named EXORCA (EXtraction-free One-pot RPA-CRISPR/Cas12a assay), designed for the immediate, sensitive and efficient detection of <em>K. pneumoniae</em>. The EXORCA assay can be completed within approximately 30 min at a constant temperature and allows for the visualization of results either through a fluorescence reader or directly by the naked eye under blue light. The feasibility of the assay was evaluated using twenty unextracted clinical samples, achieving a 100% (5/5) positive predictive value and a 100% (15/15) negative predictive value in comparison to qPCR. These results suggest that the EXORCA assay holds significant potential as a point-of-care testing tool for the rapid identification of pathogens, such as <em>K. pneumonia</em>.</p></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extraction-free one-pot assay for rapid detection of Klebsiella pneumoniae by combining RPA and CRISPR/Cas12a\",\"authors\":\"\",\"doi\":\"10.1016/j.bios.2024.116740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Klebsiella pneumoniae</em> poses a significant threat to global public health. Traditional clinical diagnostic methods, such as bacterial culture and microscopic identification, are not suitable for point-of-care testing. In response, based on the suboptimal protospacer adjacent motifs, this study develops an extraction-free one-pot assay, named EXORCA (EXtraction-free One-pot RPA-CRISPR/Cas12a assay), designed for the immediate, sensitive and efficient detection of <em>K. pneumoniae</em>. The EXORCA assay can be completed within approximately 30 min at a constant temperature and allows for the visualization of results either through a fluorescence reader or directly by the naked eye under blue light. The feasibility of the assay was evaluated using twenty unextracted clinical samples, achieving a 100% (5/5) positive predictive value and a 100% (15/15) negative predictive value in comparison to qPCR. These results suggest that the EXORCA assay holds significant potential as a point-of-care testing tool for the rapid identification of pathogens, such as <em>K. pneumonia</em>.</p></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566324007462\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324007462","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

肺炎克雷伯氏菌对全球公共卫生构成重大威胁。传统的临床诊断方法,如细菌培养和显微镜鉴定,并不适用于床旁检测。为此,本研究基于次优的原位相邻基序,开发了一种免提取的一锅式检测方法,命名为 EXORCA(EXtraction-free One-pot RPA-CRISPR/Cas12a assay),旨在即时、灵敏、高效地检测肺炎克雷伯菌。EXORCA 分析法可在恒温条件下于约 30 分钟内完成,并可通过荧光阅读器或直接用肉眼在蓝光下观察结果。使用 20 份未提取的临床样本对该检测方法的可行性进行了评估,与 qPCR 相比,阳性预测值达到 100%(5/5),阴性预测值达到 100%(15/15)。这些结果表明,EXORCA 检测法作为一种床旁检测工具,在快速鉴定肺炎克氏菌等病原体方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extraction-free one-pot assay for rapid detection of Klebsiella pneumoniae by combining RPA and CRISPR/Cas12a

Klebsiella pneumoniae poses a significant threat to global public health. Traditional clinical diagnostic methods, such as bacterial culture and microscopic identification, are not suitable for point-of-care testing. In response, based on the suboptimal protospacer adjacent motifs, this study develops an extraction-free one-pot assay, named EXORCA (EXtraction-free One-pot RPA-CRISPR/Cas12a assay), designed for the immediate, sensitive and efficient detection of K. pneumoniae. The EXORCA assay can be completed within approximately 30 min at a constant temperature and allows for the visualization of results either through a fluorescence reader or directly by the naked eye under blue light. The feasibility of the assay was evaluated using twenty unextracted clinical samples, achieving a 100% (5/5) positive predictive value and a 100% (15/15) negative predictive value in comparison to qPCR. These results suggest that the EXORCA assay holds significant potential as a point-of-care testing tool for the rapid identification of pathogens, such as K. pneumonia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信