行星内核条件下 FeS 的结构和传输特性

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
E. Edmund , T. Bi , Z.M. Geballe , K. Brugman , J.-F. Lin , S. Chariton , V.B. Prakapenka , J. Minár , R.E. Cohen , A.F. Goncharov
{"title":"行星内核条件下 FeS 的结构和传输特性","authors":"E. Edmund ,&nbsp;T. Bi ,&nbsp;Z.M. Geballe ,&nbsp;K. Brugman ,&nbsp;J.-F. Lin ,&nbsp;S. Chariton ,&nbsp;V.B. Prakapenka ,&nbsp;J. Minár ,&nbsp;R.E. Cohen ,&nbsp;A.F. Goncharov","doi":"10.1016/j.epsl.2024.118959","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal conductivity of iron and its alloys are critically important to understand conductive heat flow and dynamo action within planetary cores, however the effect of sulfur alloying is poorly understood. We have measured and computed the thermal conductivity of FeS at high pressures and temperatures using experimental techniques and first-principles calculations. Experimental conditions range from 19-116 GPa and up to 3000 K. Computations ranged from 20-150 GPa and up to 4000 K. Over this range of conditions, theory shows that FeS is in a low to intermediate spin state with finite moments at least up to 40 GPa. We obtain thermal conductivity <em>κ</em> from 15 W m<sup>−1</sup> K<sup>−1</sup> at 1000 K to 69 W m<sup>−1</sup> K<sup>−1</sup> at 4000 K from first-principles calculations, and values of 14(5)-20(10) W/m/K from experimental measurements at temperatures above 1500 K and high pressures. In both cases the effect of structure and pressure is small. We find that FeS is metallic, but a poor metal at the conditions investigated. As a result, sulfur-rich core compositions are compatible with available observational constraints on the cessation time of the Martian dynamo.</p></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"646 ","pages":"Article 118959"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and transport properties of FeS at planetary core conditions\",\"authors\":\"E. Edmund ,&nbsp;T. Bi ,&nbsp;Z.M. Geballe ,&nbsp;K. Brugman ,&nbsp;J.-F. Lin ,&nbsp;S. Chariton ,&nbsp;V.B. Prakapenka ,&nbsp;J. Minár ,&nbsp;R.E. Cohen ,&nbsp;A.F. Goncharov\",\"doi\":\"10.1016/j.epsl.2024.118959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermal conductivity of iron and its alloys are critically important to understand conductive heat flow and dynamo action within planetary cores, however the effect of sulfur alloying is poorly understood. We have measured and computed the thermal conductivity of FeS at high pressures and temperatures using experimental techniques and first-principles calculations. Experimental conditions range from 19-116 GPa and up to 3000 K. Computations ranged from 20-150 GPa and up to 4000 K. Over this range of conditions, theory shows that FeS is in a low to intermediate spin state with finite moments at least up to 40 GPa. We obtain thermal conductivity <em>κ</em> from 15 W m<sup>−1</sup> K<sup>−1</sup> at 1000 K to 69 W m<sup>−1</sup> K<sup>−1</sup> at 4000 K from first-principles calculations, and values of 14(5)-20(10) W/m/K from experimental measurements at temperatures above 1500 K and high pressures. In both cases the effect of structure and pressure is small. We find that FeS is metallic, but a poor metal at the conditions investigated. As a result, sulfur-rich core compositions are compatible with available observational constraints on the cessation time of the Martian dynamo.</p></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"646 \",\"pages\":\"Article 118959\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X24003923\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24003923","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

铁及其合金的热导率对于了解行星内核的传导热流和动力作用至关重要,但人们对硫合金化的影响知之甚少。我们利用实验技术和第一原理计算,测量并计算了铁硫在高压和高温下的热导率。实验条件为 19-116 GPa,最高温度为 3000 K。计算条件为 20-150 GPa,最高温度为 4000 K。在这一条件范围内,理论显示 FeS 处于中低自旋状态,其有限力矩至少高达 40 GPa。我们通过第一原理计算获得了导热系数κ,从 1000 K 时的 15 W m-1 K-1 到 4000 K 时的 69 W m-1 K-1 不等,而在温度高于 1500 K 和高压条件下的实验测量值为 14(5)-20(10) W/m/K。在这两种情况下,结构和压力的影响都很小。我们发现 FeS 具有金属性,但在所研究的条件下金属性较差。因此,富硫内核成分与火星动力停止时间的现有观测约束相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure and transport properties of FeS at planetary core conditions

The thermal conductivity of iron and its alloys are critically important to understand conductive heat flow and dynamo action within planetary cores, however the effect of sulfur alloying is poorly understood. We have measured and computed the thermal conductivity of FeS at high pressures and temperatures using experimental techniques and first-principles calculations. Experimental conditions range from 19-116 GPa and up to 3000 K. Computations ranged from 20-150 GPa and up to 4000 K. Over this range of conditions, theory shows that FeS is in a low to intermediate spin state with finite moments at least up to 40 GPa. We obtain thermal conductivity κ from 15 W m−1 K−1 at 1000 K to 69 W m−1 K−1 at 4000 K from first-principles calculations, and values of 14(5)-20(10) W/m/K from experimental measurements at temperatures above 1500 K and high pressures. In both cases the effect of structure and pressure is small. We find that FeS is metallic, but a poor metal at the conditions investigated. As a result, sulfur-rich core compositions are compatible with available observational constraints on the cessation time of the Martian dynamo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信